Tutorial on graph stream analytics

A. Benczúr, Ferenc Béres, Domokos M. Kelen, Róbert Pálovics
{"title":"Tutorial on graph stream analytics","authors":"A. Benczúr, Ferenc Béres, Domokos M. Kelen, Róbert Pálovics","doi":"10.1145/3465480.3468293","DOIUrl":null,"url":null,"abstract":"In this short tutorial, we cover recent methods to analyze and model network data accessible as a stream of edges, such as interactions in a social network service, or any other graph database with real-time updates from a stream. First we introduce the data streaming computational model and give examples of the so-called temporal networks. We describe how traditional graph properties (sampling, subgraph counting, graph query evaluation, etc.), low-rank approximation, network embedding, link prediction, and centrality algorithms can be implemented and updated while the edge stream is processed. As an outlook, we discuss among others distributed data stream processing engines and concept drift detection in streams. For most part, we provide sample data and implementation as Python codes packaged in a Docker image.","PeriodicalId":217173,"journal":{"name":"Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465480.3468293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this short tutorial, we cover recent methods to analyze and model network data accessible as a stream of edges, such as interactions in a social network service, or any other graph database with real-time updates from a stream. First we introduce the data streaming computational model and give examples of the so-called temporal networks. We describe how traditional graph properties (sampling, subgraph counting, graph query evaluation, etc.), low-rank approximation, network embedding, link prediction, and centrality algorithms can be implemented and updated while the edge stream is processed. As an outlook, we discuss among others distributed data stream processing engines and concept drift detection in streams. For most part, we provide sample data and implementation as Python codes packaged in a Docker image.
图形流分析教程
在这个简短的教程中,我们介绍了最近的方法来分析和建模作为边缘流可访问的网络数据,例如社交网络服务中的交互,或任何其他具有流实时更新的图形数据库。首先,我们介绍了数据流计算模型,并给出了所谓的时间网络的例子。我们描述了如何在处理边缘流的同时实现和更新传统的图属性(采样、子图计数、图查询评估等)、低秩近似、网络嵌入、链接预测和中心性算法。展望未来,我们讨论了分布式数据流处理引擎和流中的漂移检测概念。在大多数情况下,我们以打包在Docker映像中的Python代码的形式提供示例数据和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信