A neural network approach to electromyographic signal processing for a motor control task

W. T. Lester, B. Fernandez, R. Gonzalez, R. E. Barr
{"title":"A neural network approach to electromyographic signal processing for a motor control task","authors":"W. T. Lester, B. Fernandez, R. Gonzalez, R. E. Barr","doi":"10.1109/ACC.1994.735018","DOIUrl":null,"url":null,"abstract":"The authors propose a novel signal processing technique employing both neural networks and classical signal processing methods to effectively map the surface electrical signal concomitant with muscle contraction (EMG) to human muscle activation. With a computational musculoskeletal model it is shown that these predicted muscle activations, accurately estimate joint torque for various ballistic flexion exercises. Through the systems ability to generalize across exercise trials and predict a classic ballistic triphasic activation pattern, a hybrid musculoskeletal system may be able to accurately and reliably model extremely complex physiological systems with clinical implications.","PeriodicalId":147838,"journal":{"name":"Proceedings of 1994 American Control Conference - ACC '94","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 American Control Conference - ACC '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1994.735018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The authors propose a novel signal processing technique employing both neural networks and classical signal processing methods to effectively map the surface electrical signal concomitant with muscle contraction (EMG) to human muscle activation. With a computational musculoskeletal model it is shown that these predicted muscle activations, accurately estimate joint torque for various ballistic flexion exercises. Through the systems ability to generalize across exercise trials and predict a classic ballistic triphasic activation pattern, a hybrid musculoskeletal system may be able to accurately and reliably model extremely complex physiological systems with clinical implications.
运动控制任务中肌电信号处理的神经网络方法
作者提出了一种新的信号处理技术,将神经网络和经典信号处理方法结合起来,有效地将肌收缩伴随的表面电信号映射到人体肌肉的激活。计算肌肉骨骼模型表明,这些预测肌肉激活,准确地估计关节扭矩为各种弹道屈曲练习。通过系统在运动试验中的推广和预测经典弹道三相激活模式的能力,混合肌肉骨骼系统可能能够准确可靠地模拟具有临床意义的极其复杂的生理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信