{"title":"Association Rule Discovery Considering Strategic Importance: WARM","authors":"D. Choi","doi":"10.3745/KIPSTD.2010.17D.4.311","DOIUrl":null,"url":null,"abstract":"This paper presents a weight adjusted association rule mining algorithm (WARM). Assigning weights to each strategic factor and normalizing raw scores within each strategic factor are the key ideas of the presented algorithm. It is an extension of the earlier algorithm TSAA (transitive support association Apriori) and strategic importance is reflected by considering factors such as profit, marketing value, and customer satisfaction of each item. Performance analysis based on a real world database has been made and comparison of the mining outcomes obtained from three association rule mining algorithms (Apriori, TSAA, and WARM) is provided. The result indicates that each algorithm gives distinct and characteristic behavior in association rule mining.","PeriodicalId":348746,"journal":{"name":"The Kips Transactions:partd","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partd","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTD.2010.17D.4.311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a weight adjusted association rule mining algorithm (WARM). Assigning weights to each strategic factor and normalizing raw scores within each strategic factor are the key ideas of the presented algorithm. It is an extension of the earlier algorithm TSAA (transitive support association Apriori) and strategic importance is reflected by considering factors such as profit, marketing value, and customer satisfaction of each item. Performance analysis based on a real world database has been made and comparison of the mining outcomes obtained from three association rule mining algorithms (Apriori, TSAA, and WARM) is provided. The result indicates that each algorithm gives distinct and characteristic behavior in association rule mining.