Frame-Transformer Emotion Classification Network

Jiarui Gao, Yanwei Fu, Yu-Gang Jiang, X. Xue
{"title":"Frame-Transformer Emotion Classification Network","authors":"Jiarui Gao, Yanwei Fu, Yu-Gang Jiang, X. Xue","doi":"10.1145/3078971.3079030","DOIUrl":null,"url":null,"abstract":"Emotional content is a key ingredient in user-generated videos. However, due to the emotion sparsely expressed in the user-generated video, it is very difficult to analayze emotions in videos. In this paper, we propose a new architecture--Frame-Transformer Emotion Classification Network (FT-EC-net) to solve three highly correlated emotion analysis tasks: emotion recognition, emotion attribution and emotion-oriented summarization. We also contribute a new dataset for emotion attribution task by annotating the ground-truth labels of attribution segments. A comprehensive set of experiments on two datasets demonstrate the effectiveness of our framework.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Emotional content is a key ingredient in user-generated videos. However, due to the emotion sparsely expressed in the user-generated video, it is very difficult to analayze emotions in videos. In this paper, we propose a new architecture--Frame-Transformer Emotion Classification Network (FT-EC-net) to solve three highly correlated emotion analysis tasks: emotion recognition, emotion attribution and emotion-oriented summarization. We also contribute a new dataset for emotion attribution task by annotating the ground-truth labels of attribution segments. A comprehensive set of experiments on two datasets demonstrate the effectiveness of our framework.
框架变压器情感分类网络
情感内容是用户生成视频的关键要素。然而,由于用户生成视频中情感表达的稀疏,对视频中的情感进行分析是非常困难的。在本文中,我们提出了一种新的架构——帧变换情感分类网络(FT-EC-net)来解决三个高度相关的情感分析任务:情感识别、情感归因和情感导向总结。我们还通过标注归因片段的真值标签,为情绪归因任务提供了一个新的数据集。在两个数据集上进行的一组综合实验证明了我们的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信