Nonlinear open-loop gain of the baroreflex using artificial feedforward neural networks

I. Larchie, S. T. Nugent, J. Finley
{"title":"Nonlinear open-loop gain of the baroreflex using artificial feedforward neural networks","authors":"I. Larchie, S. T. Nugent, J. Finley","doi":"10.1109/CCECE.1995.528189","DOIUrl":null,"url":null,"abstract":"The baroreflex control system is inherently nonlinear. Clinical measurements which rely on linear models provide adequate representation of the system as long as the input perturbations to the reflex loop are small and fall within the linear region of the response curve. The authors propose a novel technique that combines approximation power of a class of artificial neural networks (ANNs), Volterra nonlinear block representation and eigen-analysis to provide estimates of the open-loop gain of the baroreflex. A range of eigen-parameters are extracted from the converged weight matrices of the ANN to provide a range of possible values of the gain factor of simulated baroreflex response curve.","PeriodicalId":158581,"journal":{"name":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","volume":"33 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1995.528189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The baroreflex control system is inherently nonlinear. Clinical measurements which rely on linear models provide adequate representation of the system as long as the input perturbations to the reflex loop are small and fall within the linear region of the response curve. The authors propose a novel technique that combines approximation power of a class of artificial neural networks (ANNs), Volterra nonlinear block representation and eigen-analysis to provide estimates of the open-loop gain of the baroreflex. A range of eigen-parameters are extracted from the converged weight matrices of the ANN to provide a range of possible values of the gain factor of simulated baroreflex response curve.
用人工前馈神经网络计算气压反射器的非线性开环增益
压力反射控制系统具有固有的非线性。只要对反射回路的输入扰动很小并且落在响应曲线的线性区域内,依赖于线性模型的临床测量就能充分地表示系统。作者提出了一种将一类人工神经网络(ann)的近似能力、Volterra非线性块表示和特征分析相结合的新技术,以提供对压力反射的开环增益的估计。从神经网络的收敛权矩阵中提取一系列特征参数,为模拟气压反射响应曲线的增益因子提供一个可能的取值范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信