Real-Time Detection of Fast Flux Service Networks

A. Caglayan, M. Toothaker, Dan Drapeau, Dustin Burke, Gerry Eaton
{"title":"Real-Time Detection of Fast Flux Service Networks","authors":"A. Caglayan, M. Toothaker, Dan Drapeau, Dustin Burke, Gerry Eaton","doi":"10.1109/CATCH.2009.44","DOIUrl":null,"url":null,"abstract":"Here we present the first empirical study of detecting and classifying fast flux service networks (FFSNs) in real time. FFSNs exploit a network of compromised machines (zombies) for illegal activities such as spam, phishing and malware delivery using DNS record manipulation techniques. Previous studies have focused on actively monitoring these activities over a large window (days, months) to detect such FFSNs and measure their footprint. In this paper, we present a Fast Flux Monitor (FFM) that can detect and classify a FFSN in the order of minutes using both active and passive DNS monitoring, which complements long term surveillance of FFSNs.","PeriodicalId":130933,"journal":{"name":"2009 Cybersecurity Applications & Technology Conference for Homeland Security","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Cybersecurity Applications & Technology Conference for Homeland Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATCH.2009.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

Here we present the first empirical study of detecting and classifying fast flux service networks (FFSNs) in real time. FFSNs exploit a network of compromised machines (zombies) for illegal activities such as spam, phishing and malware delivery using DNS record manipulation techniques. Previous studies have focused on actively monitoring these activities over a large window (days, months) to detect such FFSNs and measure their footprint. In this paper, we present a Fast Flux Monitor (FFM) that can detect and classify a FFSN in the order of minutes using both active and passive DNS monitoring, which complements long term surveillance of FFSNs.
快速通量服务网络的实时检测
本文首次对快速通量服务网络(FFSNs)的实时检测和分类进行了实证研究。FFSNs利用受感染的机器(僵尸)网络进行非法活动,如垃圾邮件、网络钓鱼和使用DNS记录操纵技术的恶意软件交付。以前的研究集中于在一个大的窗口(几天,几个月)内积极监测这些活动,以检测此类FFSNs并测量其足迹。在本文中,我们提出了一种快速通量监视器(FFM),它可以使用主动和被动DNS监测在几分钟内检测和分类FFSN,这是对FFSN长期监测的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信