Exact and Approximate Algorithms for Computing a Second Hamiltonian Cycle

Argyrios Deligkas, G. Mertzios, P. Spirakis, V. Zamaraev
{"title":"Exact and Approximate Algorithms for Computing a Second Hamiltonian Cycle","authors":"Argyrios Deligkas, G. Mertzios, P. Spirakis, V. Zamaraev","doi":"10.4230/LIPIcs.MFCS.2020.27","DOIUrl":null,"url":null,"abstract":"In this paper we consider the following total functional problem: Given a cubic Hamiltonian graph $G$ and a Hamiltonian cycle $C_0$ of $G$, how can we compute a second Hamiltonian cycle $C_1 \\neq C_0$ of $G$? Cedric Smith proved in 1946, using a non-constructive parity argument, that such a second Hamiltonian cycle always exists. Our main result is an algorithm which computes the second Hamiltonian cycle in time $O(n \\cdot 2^{(0.3-\\varepsilon)n})$ time, for some positive constant $\\varepsilon>0$, and in polynomial space, thus improving the state of the art running time for solving this problem. Our algorithm is based on a fundamental structural property of Thomason's lollipop algorithm, which we prove here for the first time. In the direction of approximating the length of a second cycle in a Hamiltonian graph $G$ with a given Hamiltonian cycle $C_0$ (where we may not have guarantees on the existence of a second Hamiltonian cycle), we provide a linear-time algorithm computing a second cycle with length at least $n - 4\\alpha (\\sqrt{n}+2\\alpha)+8$, where $\\alpha = \\frac{\\Delta-2}{\\delta-2}$ and $\\delta,\\Delta$ are the minimum and the maximum degree of the graph, respectively. This approximation result also improves the state of the art.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2020.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we consider the following total functional problem: Given a cubic Hamiltonian graph $G$ and a Hamiltonian cycle $C_0$ of $G$, how can we compute a second Hamiltonian cycle $C_1 \neq C_0$ of $G$? Cedric Smith proved in 1946, using a non-constructive parity argument, that such a second Hamiltonian cycle always exists. Our main result is an algorithm which computes the second Hamiltonian cycle in time $O(n \cdot 2^{(0.3-\varepsilon)n})$ time, for some positive constant $\varepsilon>0$, and in polynomial space, thus improving the state of the art running time for solving this problem. Our algorithm is based on a fundamental structural property of Thomason's lollipop algorithm, which we prove here for the first time. In the direction of approximating the length of a second cycle in a Hamiltonian graph $G$ with a given Hamiltonian cycle $C_0$ (where we may not have guarantees on the existence of a second Hamiltonian cycle), we provide a linear-time algorithm computing a second cycle with length at least $n - 4\alpha (\sqrt{n}+2\alpha)+8$, where $\alpha = \frac{\Delta-2}{\delta-2}$ and $\delta,\Delta$ are the minimum and the maximum degree of the graph, respectively. This approximation result also improves the state of the art.
计算第二个哈密顿循环的精确和近似算法
本文考虑以下全泛函问题:给定一个三次哈密顿图$G$和一个$G$的哈密顿循环$C_0$,如何计算第二个$G$的哈密顿循环$C_1 \neq C_0$ ?塞德里克·史密斯在1946年用一个非建设性宇称论证证明了这样的第二个哈密顿循环总是存在的。我们的主要成果是一种算法,该算法在时间$O(n \cdot 2^{(0.3-\varepsilon)n})$时间内计算第二个哈密顿循环,对于一些正常数$\varepsilon>0$,在多项式空间中,从而提高了解决这个问题的最先进的运行时间。我们的算法基于Thomason棒棒糖算法的基本结构性质,我们在这里首次证明了这一点。在用给定的哈密顿循环$C_0$(我们可能无法保证第二个哈密顿循环的存在)近似哈密顿图$G$中第二个循环的长度的方向上,我们提供了一个线性时间算法来计算长度至少为$n - 4\alpha (\sqrt{n}+2\alpha)+8$的第二个循环,其中$\alpha = \frac{\Delta-2}{\delta-2}$和$\delta,\Delta$分别是图的最小度和最大度。这个近似结果也提高了技术的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信