AT[N]-net: multimodal spatiotemporal network for subtype identification in Alzheimer's disease

Jingwen Zhang, Enze Xu, Minghan Chen
{"title":"AT[N]-net: multimodal spatiotemporal network for subtype identification in Alzheimer's disease","authors":"Jingwen Zhang, Enze Xu, Minghan Chen","doi":"10.1145/3535508.3545103","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is a heterogeneous, multifactorial neurodegenerative disorder, where beta-amyloid (A), pathologic tau (T), neurodegeneration ([N]), and structural brain network (Net) are four major indicators of AD progression. Most current studies on AD rely on single-source modality and ignore complex biological interactions at molecular level. In this study, we propose a novel multimodal spatiotemporal stratification network (MSSN) that is built upon the fusion of multiple data modalities and the combined power of systems biology and deep learning. Altogether, our stratification approach could (1) ameliorate limitations caused by insufficient longitudinal imaging data, (2) extract important spatiotemporal features vectors from imaging data, (3) exploit the subject-specific longitudinal prediction of a holistic biomarker set, and (4) generate symptoms related finegrained subtype classification.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a heterogeneous, multifactorial neurodegenerative disorder, where beta-amyloid (A), pathologic tau (T), neurodegeneration ([N]), and structural brain network (Net) are four major indicators of AD progression. Most current studies on AD rely on single-source modality and ignore complex biological interactions at molecular level. In this study, we propose a novel multimodal spatiotemporal stratification network (MSSN) that is built upon the fusion of multiple data modalities and the combined power of systems biology and deep learning. Altogether, our stratification approach could (1) ameliorate limitations caused by insufficient longitudinal imaging data, (2) extract important spatiotemporal features vectors from imaging data, (3) exploit the subject-specific longitudinal prediction of a holistic biomarker set, and (4) generate symptoms related finegrained subtype classification.
AT[N]-net:用于阿尔茨海默病亚型识别的多模态时空网络
阿尔茨海默病(AD)是一种异质性、多因素的神经退行性疾病,其中β -淀粉样蛋白(a)、病理性tau蛋白(T)、神经变性([N])和结构脑网络(Net)是AD进展的四个主要指标。目前对AD的研究大多依赖于单源模式,忽视了分子水平上复杂的生物相互作用。在这项研究中,我们提出了一个新的多模态时空分层网络(MSSN),该网络建立在多种数据模式的融合以及系统生物学和深度学习的综合能力之上。总之,我们的分层方法可以(1)改善纵向成像数据不足造成的局限性,(2)从成像数据中提取重要的时空特征向量,(3)利用整体生物标志物集的特定受试者纵向预测,以及(4)生成与症状相关的细粒度亚型分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信