D. Guan, Yongkoo Han, Young-Koo Lee, Sungyoung Lee, Chongkug Park
{"title":"Refining classifier from unsampled data","authors":"D. Guan, Yongkoo Han, Young-Koo Lee, Sungyoung Lee, Chongkug Park","doi":"10.1109/FUZZY.2009.5277221","DOIUrl":null,"url":null,"abstract":"For a learning task with a huge number of training instances, we sample some informative/important instances, which are then used for learning. Obtaining accurately labeling data is always difficult thus noise detection is required to filter out noises from sampled instances since the noises will degrade the learning performance. In this work, we propose to utilize unsampled instances to improve the performance of noise detection in sampled instances. Empirical study validates our idea that refined classifier can be achieved from noisy sampled instances by utilizing unsampled instances.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a learning task with a huge number of training instances, we sample some informative/important instances, which are then used for learning. Obtaining accurately labeling data is always difficult thus noise detection is required to filter out noises from sampled instances since the noises will degrade the learning performance. In this work, we propose to utilize unsampled instances to improve the performance of noise detection in sampled instances. Empirical study validates our idea that refined classifier can be achieved from noisy sampled instances by utilizing unsampled instances.