Refining classifier from unsampled data

D. Guan, Yongkoo Han, Young-Koo Lee, Sungyoung Lee, Chongkug Park
{"title":"Refining classifier from unsampled data","authors":"D. Guan, Yongkoo Han, Young-Koo Lee, Sungyoung Lee, Chongkug Park","doi":"10.1109/FUZZY.2009.5277221","DOIUrl":null,"url":null,"abstract":"For a learning task with a huge number of training instances, we sample some informative/important instances, which are then used for learning. Obtaining accurately labeling data is always difficult thus noise detection is required to filter out noises from sampled instances since the noises will degrade the learning performance. In this work, we propose to utilize unsampled instances to improve the performance of noise detection in sampled instances. Empirical study validates our idea that refined classifier can be achieved from noisy sampled instances by utilizing unsampled instances.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a learning task with a huge number of training instances, we sample some informative/important instances, which are then used for learning. Obtaining accurately labeling data is always difficult thus noise detection is required to filter out noises from sampled instances since the noises will degrade the learning performance. In this work, we propose to utilize unsampled instances to improve the performance of noise detection in sampled instances. Empirical study validates our idea that refined classifier can be achieved from noisy sampled instances by utilizing unsampled instances.
从未采样数据中提炼分类器
对于具有大量训练实例的学习任务,我们抽取一些信息丰富/重要的实例,然后将其用于学习。获得准确的标记数据一直是困难的,因此需要噪声检测来过滤采样实例中的噪声,因为噪声会降低学习性能。在这项工作中,我们建议利用未采样实例来提高采样实例中的噪声检测性能。实证研究验证了我们的想法,即可以利用非采样实例从噪声采样实例中获得精细分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信