One-Shot Example Videos Localization Network for Weakly-Supervised Temporal Action Localization

Yushu Liu, Weigang Zhang, Guorong Li, Li Su, Qingming Huang
{"title":"One-Shot Example Videos Localization Network for Weakly-Supervised Temporal Action Localization","authors":"Yushu Liu, Weigang Zhang, Guorong Li, Li Su, Qingming Huang","doi":"10.1109/MIPR51284.2021.00026","DOIUrl":null,"url":null,"abstract":"This paper tackles the problem of example-driven weakly-supervised temporal action localization. We propose the One-shot Example Videos Localization Network (OSEVLNet) for precisely localizing the action instances in untrimmed videos with only one trimmed example video. Since the frame-level ground truth is unavailable under weakly-supervised settings, our approach automatically trains a self-attention module with reconstruction and feature discrepancy restriction. Specifically, the reconstruction restriction minimizes the discrepancy between the original input features and the reconstructed features of a Variational AutoEncoder (VAE) module. The feature discrepancy restriction maximizes the distance of weighted features between highly-responsive regions and slightly-responsive regions. Our approach achieves comparable or better results on THUMOS’14 dataset than other weakly-supervised methods while it is trained with much less videos. Moreover, our approach is especially suitable for the expansion of newly emerging action categories to meet the requirements of different occasions.","PeriodicalId":139543,"journal":{"name":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR51284.2021.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper tackles the problem of example-driven weakly-supervised temporal action localization. We propose the One-shot Example Videos Localization Network (OSEVLNet) for precisely localizing the action instances in untrimmed videos with only one trimmed example video. Since the frame-level ground truth is unavailable under weakly-supervised settings, our approach automatically trains a self-attention module with reconstruction and feature discrepancy restriction. Specifically, the reconstruction restriction minimizes the discrepancy between the original input features and the reconstructed features of a Variational AutoEncoder (VAE) module. The feature discrepancy restriction maximizes the distance of weighted features between highly-responsive regions and slightly-responsive regions. Our approach achieves comparable or better results on THUMOS’14 dataset than other weakly-supervised methods while it is trained with much less videos. Moreover, our approach is especially suitable for the expansion of newly emerging action categories to meet the requirements of different occasions.
弱监督时间动作定位的单镜头视频定位网络
本文研究了实例驱动的弱监督时态动作定位问题。我们提出了单镜头示例视频定位网络(OSEVLNet),用于精确定位未修剪视频中的动作实例,只有一个修剪的示例视频。由于在弱监督设置下,帧级地面真值不可用,我们的方法自动训练具有重构和特征差异限制的自关注模块。具体来说,重构限制最小化了变分自编码器(VAE)模块的原始输入特征与重构特征之间的差异。特征差异限制使高响应区域和低响应区域之间的加权特征距离最大化。我们的方法在THUMOS ' 14数据集上取得了与其他弱监督方法相当或更好的结果,而它使用的视频要少得多。而且,我们的方法特别适合于新出现的动作类别的扩展,以满足不同场合的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信