Research on Knowledge Recommendation Technology Based on Domain Knowledge Graph: A Case Study in Aerospace Engine Domain

Feifan Deng, Qingjie Hu, Bin Meng, Hong Zhang
{"title":"Research on Knowledge Recommendation Technology Based on Domain Knowledge Graph: A Case Study in Aerospace Engine Domain","authors":"Feifan Deng, Qingjie Hu, Bin Meng, Hong Zhang","doi":"10.1109/AINIT59027.2023.10212707","DOIUrl":null,"url":null,"abstract":"In order to enhance knowledge reuse in product design and development, we propose a Domain-Specific Knowledge Graph-Based Recommendation Approach (DKGR) in conjunction with the Intelligent Knowledge Management System (IKMS) of an aerospace research institute in Beijing. The DKGR technique leverages the rich semantic relationships within the Domain Knowledge Graph, including product structures, task associations, and knowledge links and incorporates user logs into the DKG. This optimization helps address user matrix sparsity, resulting in improved accuracy and interpretability. Experimental analysis using real-world datasets demonstrates that the DKGR technique achieves an average F1 score of 0.515, compared to 0.343 for traditional recommendation algorithms. It indicates that the DKGR technique provides superior recommendation services in real-world scenarios.","PeriodicalId":276778,"journal":{"name":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT59027.2023.10212707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to enhance knowledge reuse in product design and development, we propose a Domain-Specific Knowledge Graph-Based Recommendation Approach (DKGR) in conjunction with the Intelligent Knowledge Management System (IKMS) of an aerospace research institute in Beijing. The DKGR technique leverages the rich semantic relationships within the Domain Knowledge Graph, including product structures, task associations, and knowledge links and incorporates user logs into the DKG. This optimization helps address user matrix sparsity, resulting in improved accuracy and interpretability. Experimental analysis using real-world datasets demonstrates that the DKGR technique achieves an average F1 score of 0.515, compared to 0.343 for traditional recommendation algorithms. It indicates that the DKGR technique provides superior recommendation services in real-world scenarios.
基于领域知识图的知识推荐技术研究——以航空发动机领域为例
为了提高产品设计和开发中的知识重用,我们结合北京某航天研究所的智能知识管理系统,提出了一种基于特定领域知识图的推荐方法(DKGR)。DKGR技术利用领域知识图中丰富的语义关系,包括产品结构、任务关联和知识链接,并将用户日志合并到DKG中。这种优化有助于解决用户矩阵稀疏性问题,从而提高准确性和可解释性。使用真实数据集的实验分析表明,DKGR技术的平均F1分数为0.515,而传统推荐算法的平均F1分数为0.343。这表明DKGR技术在实际场景中提供了更好的推荐服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信