{"title":"NKMH: A Neural Efficient Recommendation Based on Neighborhood Key Information Aggregation of Modified Hawkes","authors":"Xin Xu, Nan Wang, Huijie Jin, Yang Liu, Kun Li","doi":"10.1109/COMPSAC54236.2022.00035","DOIUrl":null,"url":null,"abstract":"The rapid development of neural networks has con-tributed to the increasing maturity of recommendation systems. However, deep neural networks have poor interpretability for models and do not show strong advantages for sparse data and noisy data. Recently, Hawkes process has become more and more focused for its good interpretability with probabilistic models. Based on this, we proposes A Neural Efficient Recommendation Model Based on Neighborhood Key Information Aggregation of Modified Hawkes(NKMH). The model utilizes a neural network and designs three modules to jointly fit the modified Hawkes process. It not only inherits the high interpretability of Hawkes, but also effectively solves the problem of poor prediction ability of the Hawkes process. Besides, we present a novel key information search strategy(KISS), which can effectively remove the noise in a session and alleviate the sparsity of the data to some extent. Extensive experiments on two datasets show that the NKMH model outperforms many current popular models.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"45 17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of neural networks has con-tributed to the increasing maturity of recommendation systems. However, deep neural networks have poor interpretability for models and do not show strong advantages for sparse data and noisy data. Recently, Hawkes process has become more and more focused for its good interpretability with probabilistic models. Based on this, we proposes A Neural Efficient Recommendation Model Based on Neighborhood Key Information Aggregation of Modified Hawkes(NKMH). The model utilizes a neural network and designs three modules to jointly fit the modified Hawkes process. It not only inherits the high interpretability of Hawkes, but also effectively solves the problem of poor prediction ability of the Hawkes process. Besides, we present a novel key information search strategy(KISS), which can effectively remove the noise in a session and alleviate the sparsity of the data to some extent. Extensive experiments on two datasets show that the NKMH model outperforms many current popular models.