{"title":"Research on Named Entity Recognition Based on ELECTRA and Intelligent Face Image Processing","authors":"Yihui Fu, Fanliang Bu","doi":"10.1109/ICESIT53460.2021.9696907","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that the corpus of drug-related fields is not rich and the relevant information of drug-related personnel is insufficient, this paper constructs a 600,000-word-scale drug-related text data set, and proposes a named entity recognition method for drug-related personnel based on ELECTRA-BiLSTM-CRF. First input the labeled text into the ELECTRA pre-training language model to obtain a word vector with better semantic representation; then input the trained word vector into the bidirectional long short-term memory (BiLSTM) network to extract the context feature; finally, the best predicted label sequence is obtained through the conditional random field(CRF). The performance of this model was evaluated on the drug-related text data set. The experimental results showed that the F1 value of the ELECTRA-BiLSTM-CRF model reached 94%, which was better than the BERT-BiLSTM-CRF, BERT-CRF, and BiLSTM-CRF models, which proved this model has a good effect on the named entity recognition of drug-related personnel.","PeriodicalId":164745,"journal":{"name":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESIT53460.2021.9696907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the problem that the corpus of drug-related fields is not rich and the relevant information of drug-related personnel is insufficient, this paper constructs a 600,000-word-scale drug-related text data set, and proposes a named entity recognition method for drug-related personnel based on ELECTRA-BiLSTM-CRF. First input the labeled text into the ELECTRA pre-training language model to obtain a word vector with better semantic representation; then input the trained word vector into the bidirectional long short-term memory (BiLSTM) network to extract the context feature; finally, the best predicted label sequence is obtained through the conditional random field(CRF). The performance of this model was evaluated on the drug-related text data set. The experimental results showed that the F1 value of the ELECTRA-BiLSTM-CRF model reached 94%, which was better than the BERT-BiLSTM-CRF, BERT-CRF, and BiLSTM-CRF models, which proved this model has a good effect on the named entity recognition of drug-related personnel.