Deep Potentials for Materials Science

T. Wen, Linfeng Zhang, Han Wang, W. E, D. Srolovitz
{"title":"Deep Potentials for Materials Science","authors":"T. Wen, Linfeng Zhang, Han Wang, W. E, D. Srolovitz","doi":"10.1088/2752-5724/ac681d","DOIUrl":null,"url":null,"abstract":"\n To fill the gap between accurate (and expensive) ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials, a new class of descriptions of atomic interactions has emerged and been widely applied; i.e., machine learning potentials (MLPs). One recently developed type of MLP is the Deep Potential (DP) method. In this review, we provide an introduction to DP methods in computational materials science. The theory underlying the DP method is presented along with a step-by-step introduction to their development and use. We also review materials applications of DPs in a wide range of materials systems. The DP Library provides a platform for the development of DPs and a database of extant DPs. We discuss the accuracy and efficiency of DPs compared with ab initio methods and empirical potentials.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"1999 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Futures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5724/ac681d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

To fill the gap between accurate (and expensive) ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials, a new class of descriptions of atomic interactions has emerged and been widely applied; i.e., machine learning potentials (MLPs). One recently developed type of MLP is the Deep Potential (DP) method. In this review, we provide an introduction to DP methods in computational materials science. The theory underlying the DP method is presented along with a step-by-step introduction to their development and use. We also review materials applications of DPs in a wide range of materials systems. The DP Library provides a platform for the development of DPs and a database of extant DPs. We discuss the accuracy and efficiency of DPs compared with ab initio methods and empirical potentials.
材料科学的深层潜力
为了填补精确(和昂贵)的从头计算和基于经验原子相互作用势的有效原子模拟之间的差距,出现了一类新的原子相互作用描述并被广泛应用;即机器学习潜力(mlp)。最近发展起来的一种MLP方法是深电位法(DP)。在这篇综述中,我们提供了一个介绍DP方法在计算材料科学。DP方法的理论基础是随着一步一步地介绍他们的发展和使用。我们还回顾了DPs在各种材料系统中的应用。DP库提供了一个DP开发平台和一个现有DP数据库。我们讨论了DPs与从头算方法和经验电位的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信