Channel-Position Self-Attention with Query Refinement Skeleton Graph Neural Network in Human Pose Estimation

Shek Wai Chu, Chaoyi Zhang, Yang Song, Weidong (Tom) Cai
{"title":"Channel-Position Self-Attention with Query Refinement Skeleton Graph Neural Network in Human Pose Estimation","authors":"Shek Wai Chu, Chaoyi Zhang, Yang Song, Weidong (Tom) Cai","doi":"10.1109/ICIP46576.2022.9897882","DOIUrl":null,"url":null,"abstract":"Human Pose Estimation (HPE) is a long-standing yet challenging task in computer vision. The nature of the problem requires comprehensive global contextual reasoning among joints in different locations. In this work, we explore how to incorporate two popular and effective concepts, self-attention and Graph Neural Network (GNN), to model long-range information in HPE. Three different ways to implement self-attention in 3D feature maps are studied, where the best result is achieved via the channel-position version. Accuracy is further improved by refining the queries via an efficient channel-wise parallel GNN that explicitly models the human joint graphical relationships. We are able to improve prediction accuracy on strong baseline models and achieve state-of-the-art results.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human Pose Estimation (HPE) is a long-standing yet challenging task in computer vision. The nature of the problem requires comprehensive global contextual reasoning among joints in different locations. In this work, we explore how to incorporate two popular and effective concepts, self-attention and Graph Neural Network (GNN), to model long-range information in HPE. Three different ways to implement self-attention in 3D feature maps are studied, where the best result is achieved via the channel-position version. Accuracy is further improved by refining the queries via an efficient channel-wise parallel GNN that explicitly models the human joint graphical relationships. We are able to improve prediction accuracy on strong baseline models and achieve state-of-the-art results.
基于查询细化骨架图神经网络的通道位置自关注人体姿态估计
人体姿态估计(HPE)是计算机视觉领域一个长期存在且具有挑战性的课题。该问题的性质要求在不同位置的关节之间进行全面的全局上下文推理。在这项工作中,我们探讨了如何将两个流行且有效的概念,自我关注和图神经网络(GNN),结合起来,在HPE中建模远程信息。研究了在三维特征图中实现自关注的三种不同方法,其中通过通道位置版本获得了最佳结果。通过有效的通道并行GNN(显式建模人类关节图形关系)精炼查询,进一步提高了准确性。我们能够在强基线模型上提高预测精度,并获得最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信