Optimizing Pattern-Matching for Memory-Efficient Heterogeneous DNA Processing in Bioinformatics

Ciprian-Petrisor Pungila, Darius Galis, V. Negru
{"title":"Optimizing Pattern-Matching for Memory-Efficient Heterogeneous DNA Processing in Bioinformatics","authors":"Ciprian-Petrisor Pungila, Darius Galis, V. Negru","doi":"10.1109/SACI.2018.8441000","DOIUrl":null,"url":null,"abstract":"We are proposing a new, memory-efficient approach to optimizing DNA pattern-matching in bioinformatics through a heterogeneous implementation and new architectural layout, that poses several advantages over usual approaches, which we discuss in detail. We are applying our approach on a subset of DNA sequences part of the FASTA open database, under different hardware settings, and observe a significant performance increase in our heterogeneous implementation. With a practical reduction of 23 times less memory usage than a classic implementation of the same algorithm, and massive scaling capabilities for high-throughput DNA-matching, our approach proves its feasibility for scalable heterogeneous architectures.","PeriodicalId":126087,"journal":{"name":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2018.8441000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We are proposing a new, memory-efficient approach to optimizing DNA pattern-matching in bioinformatics through a heterogeneous implementation and new architectural layout, that poses several advantages over usual approaches, which we discuss in detail. We are applying our approach on a subset of DNA sequences part of the FASTA open database, under different hardware settings, and observe a significant performance increase in our heterogeneous implementation. With a practical reduction of 23 times less memory usage than a classic implementation of the same algorithm, and massive scaling capabilities for high-throughput DNA-matching, our approach proves its feasibility for scalable heterogeneous architectures.
生物信息学中记忆效率异构DNA处理的优化模式匹配
我们提出了一种新的、内存高效的方法,通过异构实现和新的架构布局来优化生物信息学中的DNA模式匹配,这比通常的方法有几个优势,我们将详细讨论。我们将我们的方法应用于FASTA开放数据库的DNA序列子集,在不同的硬件设置下,观察到我们的异构实现的显着性能提高。与相同算法的经典实现相比,实际减少了23倍的内存使用,并且具有高通量dna匹配的大规模扩展能力,我们的方法证明了其在可扩展异构架构中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信