New Recommendation Algorithm of Valuation Filling Based on Community Filtering

Lisha Han
{"title":"New Recommendation Algorithm of Valuation Filling Based on Community Filtering","authors":"Lisha Han","doi":"10.1109/icomssc45026.2018.8941860","DOIUrl":null,"url":null,"abstract":"For the data sparsity problem in the traditional collaborative filtering algorithm, this paper proposes a new recommendation algorithm of valuation filling based on community filtering. This algorithm confirms the \"user rating scale\" and \"commodity popularity\" in the similar user group of each kind, so as to achieve more accurate valuation calculation. And then it improves the quality of recommendation. Finally, the new algorithm’s feasibility and effectiveness are verified by specific experiments, and it has better recommendation effect on sparse data sets.","PeriodicalId":332213,"journal":{"name":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icomssc45026.2018.8941860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the data sparsity problem in the traditional collaborative filtering algorithm, this paper proposes a new recommendation algorithm of valuation filling based on community filtering. This algorithm confirms the "user rating scale" and "commodity popularity" in the similar user group of each kind, so as to achieve more accurate valuation calculation. And then it improves the quality of recommendation. Finally, the new algorithm’s feasibility and effectiveness are verified by specific experiments, and it has better recommendation effect on sparse data sets.
基于社区过滤的价值填充推荐新算法
针对传统协同过滤算法存在的数据稀疏性问题,提出了一种基于社区过滤的价值填充推荐算法。该算法确定了每一类同类用户群中的“用户评分规模”和“商品人气”,从而实现更准确的估值计算。然后它提高了推荐的质量。最后,通过具体实验验证了新算法的可行性和有效性,在稀疏数据集上具有较好的推荐效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信