SAR image denoising using homomorphic and shearlet transforms

Hossein Rezaei, A. Karami
{"title":"SAR image denoising using homomorphic and shearlet transforms","authors":"Hossein Rezaei, A. Karami","doi":"10.1109/PRIA.2017.7983022","DOIUrl":null,"url":null,"abstract":"Recently, denoising of Synthetic Aperture Radar (SAR) images has gained particular attention. SAR image is usually affected by speckle noise. In this paper a new method for speckle noise reduction of SAR images using shearlet transform (ST) is introduced. ST could significantly remove the Gaussian noise therefore in the proposed method first, noisy images are converted to a domain which type of noise is Gaussian using homomorphic transform (HT). Second, 2D shear-let is applied to the data. Third, the hard thresholding is used in order to denoise the shearlet coefficients. Finally reconstructed denoised images are obtained by applying the inverse shearlet and homomorphic transforms. The proposed method (ST-HT) is compared with state of art denoising algorithms on SAR images. Obtained results show the superiority of the proposed approach.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recently, denoising of Synthetic Aperture Radar (SAR) images has gained particular attention. SAR image is usually affected by speckle noise. In this paper a new method for speckle noise reduction of SAR images using shearlet transform (ST) is introduced. ST could significantly remove the Gaussian noise therefore in the proposed method first, noisy images are converted to a domain which type of noise is Gaussian using homomorphic transform (HT). Second, 2D shear-let is applied to the data. Third, the hard thresholding is used in order to denoise the shearlet coefficients. Finally reconstructed denoised images are obtained by applying the inverse shearlet and homomorphic transforms. The proposed method (ST-HT) is compared with state of art denoising algorithms on SAR images. Obtained results show the superiority of the proposed approach.
基于同态和剪切波变换的SAR图像去噪
近年来,合成孔径雷达(SAR)图像的去噪问题引起了人们的广泛关注。SAR图像通常会受到散斑噪声的影响。本文介绍了一种利用剪切波变换(ST)去除SAR图像散斑噪声的新方法。ST可以显著去除高斯噪声,因此在提出的方法中,首先使用同态变换(HT)将噪声图像转换到噪声类型为高斯的域。其次,对数据进行二维剪切let处理。第三,采用硬阈值法对剪切系数进行去噪。最后通过反剪切和同态变换得到去噪后的图像。将该方法与现有的SAR图像去噪算法进行了比较。仿真结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信