Metaheuristic optimization for automatic clustering of customer-oriented supply chain data

C. Mattos, G. Barreto, D. Horstkemper, B. Hellingrath
{"title":"Metaheuristic optimization for automatic clustering of customer-oriented supply chain data","authors":"C. Mattos, G. Barreto, D. Horstkemper, B. Hellingrath","doi":"10.1109/WSOM.2017.8020025","DOIUrl":null,"url":null,"abstract":"In this paper we evaluate metaheuristic optimization methods on a partitional clustering task of a real-world supply chain dataset, aiming at customer segmentation. For this purpose, we rely on the automatic clustering framework proposed by Das et al. [1], named henceforth DAK framework, by testing its performance for seven different metaheuristic optimization algorithm, namely: simulated annealing (SA), genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony (ABC), cuckoo search (CS) and fireworks algorithm (FA). An in-depth analysis of the obtained results is carried out in order to compare the performances of the metaheuristic optimization algorithms under the DAK framework with that of standard (i.e. non-automatic) clustering methodology.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we evaluate metaheuristic optimization methods on a partitional clustering task of a real-world supply chain dataset, aiming at customer segmentation. For this purpose, we rely on the automatic clustering framework proposed by Das et al. [1], named henceforth DAK framework, by testing its performance for seven different metaheuristic optimization algorithm, namely: simulated annealing (SA), genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony (ABC), cuckoo search (CS) and fireworks algorithm (FA). An in-depth analysis of the obtained results is carried out in order to compare the performances of the metaheuristic optimization algorithms under the DAK framework with that of standard (i.e. non-automatic) clustering methodology.
面向客户的供应链数据自动聚类的元启发式优化
在本文中,我们评估了针对现实世界供应链数据集的分区聚类任务的元启发式优化方法,旨在细分客户。为此,我们依靠Das等人[1]提出的自动聚类框架(以下命名为DAK框架),通过测试其在模拟退火(SA)、遗传算法(GA)、粒子群优化(PSO)、差分进化(DE)、人工蜂群(ABC)、布谷鸟搜索(CS)和烟花算法(FA)等七种不同的元启发式优化算法上的性能。为了比较DAK框架下的元启发式优化算法与标准(即非自动)聚类方法的性能,对获得的结果进行了深入分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信