C. Mattos, G. Barreto, D. Horstkemper, B. Hellingrath
{"title":"Metaheuristic optimization for automatic clustering of customer-oriented supply chain data","authors":"C. Mattos, G. Barreto, D. Horstkemper, B. Hellingrath","doi":"10.1109/WSOM.2017.8020025","DOIUrl":null,"url":null,"abstract":"In this paper we evaluate metaheuristic optimization methods on a partitional clustering task of a real-world supply chain dataset, aiming at customer segmentation. For this purpose, we rely on the automatic clustering framework proposed by Das et al. [1], named henceforth DAK framework, by testing its performance for seven different metaheuristic optimization algorithm, namely: simulated annealing (SA), genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony (ABC), cuckoo search (CS) and fireworks algorithm (FA). An in-depth analysis of the obtained results is carried out in order to compare the performances of the metaheuristic optimization algorithms under the DAK framework with that of standard (i.e. non-automatic) clustering methodology.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper we evaluate metaheuristic optimization methods on a partitional clustering task of a real-world supply chain dataset, aiming at customer segmentation. For this purpose, we rely on the automatic clustering framework proposed by Das et al. [1], named henceforth DAK framework, by testing its performance for seven different metaheuristic optimization algorithm, namely: simulated annealing (SA), genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony (ABC), cuckoo search (CS) and fireworks algorithm (FA). An in-depth analysis of the obtained results is carried out in order to compare the performances of the metaheuristic optimization algorithms under the DAK framework with that of standard (i.e. non-automatic) clustering methodology.