The Inverse Eigenvalue Problem for a Special Kind of Matrices

Zhibing Liu, Chengfeng Xu, Kanmin Wang
{"title":"The Inverse Eigenvalue Problem for a Special Kind of Matrices","authors":"Zhibing Liu, Chengfeng Xu, Kanmin Wang","doi":"10.1109/ICIC.2011.38","DOIUrl":null,"url":null,"abstract":"In this paper we study a kind of inverse eigenvalue problem for a special kind of real symmetric matrices: the real symmetric Arrow-plus-Jacobi matrices. That is, matrices which look like arrow matrices forward and Jacobi backward, from the station, . We give a necessary and sufficient condition for the existence of such two matrices. Our results are constructive, in the sense that they generate an algorithmic procedure to construct the matrix.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we study a kind of inverse eigenvalue problem for a special kind of real symmetric matrices: the real symmetric Arrow-plus-Jacobi matrices. That is, matrices which look like arrow matrices forward and Jacobi backward, from the station, . We give a necessary and sufficient condition for the existence of such two matrices. Our results are constructive, in the sense that they generate an algorithmic procedure to construct the matrix.
一类特殊矩阵的特征值反问题
本文研究了一类特殊实对称矩阵的特征值反问题:实对称的arrow - + jacobi矩阵。也就是说,从空间站来看,向前看起来像箭头矩阵向后看起来像雅可比矩阵。给出了这两个矩阵存在的充分必要条件。我们的结果是建设性的,从某种意义上说,它们生成了一个构造矩阵的算法程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信