{"title":"Biological pathway prediction from multiple data sources using iterative Bayesian updating","authors":"Corey Powell, Joshua M. Stuart","doi":"10.1109/CSBW.2005.30","DOIUrl":null,"url":null,"abstract":"There is a diversity of functional genomics data, such as gene expression data from microarray experiments, phenotypic data from gene deletion experiments, protein-protein interaction data, and data from manually curated databases of gene function. Each data source finds certain types of relationships between genes and misses other types of relationships. A method that can combine multiple data sources might then be able to uncover more relationships than a method that depends on a single data source. This paper presents a method that uses an iterative Bayesian updating technique to combine data from multiple sources, represented as undirected weighted graphs, in order to estimate the probability that a gene is part of a given biological pathway. This method improves performance over a simple neighbor based approach for several well characterized biological pathways.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There is a diversity of functional genomics data, such as gene expression data from microarray experiments, phenotypic data from gene deletion experiments, protein-protein interaction data, and data from manually curated databases of gene function. Each data source finds certain types of relationships between genes and misses other types of relationships. A method that can combine multiple data sources might then be able to uncover more relationships than a method that depends on a single data source. This paper presents a method that uses an iterative Bayesian updating technique to combine data from multiple sources, represented as undirected weighted graphs, in order to estimate the probability that a gene is part of a given biological pathway. This method improves performance over a simple neighbor based approach for several well characterized biological pathways.