Performance Study of Convolutional Neural Network Architectures for 3D Incompressible Flow Simulations

Ekhi Ajuria Illarramendi, M. Bauerheim, N. Ashton, Coretin Lapeyre, B. Cuenot
{"title":"Performance Study of Convolutional Neural Network Architectures for 3D Incompressible Flow Simulations","authors":"Ekhi Ajuria Illarramendi, M. Bauerheim, N. Ashton, Coretin Lapeyre, B. Cuenot","doi":"10.1145/3592979.3593416","DOIUrl":null,"url":null,"abstract":"Recently, correctly handling spatial information from multiple scales has proven to be essential in Machine Learning (ML) applications on Computational Fluid Dynamics (CFD) problems. For these type of applications, Convolutional Neural Networks (CNN) that use Multiple Downsampled Branches (MDBs) to efficiently encode spatial information from different spatial scales have proven to be some of the most successful architectures. However, not many guidelines exist to build these architectures, particularly when applied to more challenging 3D configurations. Thus, this work focuses on studying the impact of the choice of the number of down-sampled branches, accuracy and performance-wise in 3D incompressible fluid test cases, where a CNN is used to solve the Poisson equation. The influence of this parameter is assessed by performing multiple trainings of Unet architectures with varying MDBs on a cloud-computing environment. These trained networks are then tested on two 3D CFD problems: a plume and a Von Karman vortex street at various operating points, where the solution of the neural network is coupled to a nonlinear advection equation.","PeriodicalId":174137,"journal":{"name":"Proceedings of the Platform for Advanced Scientific Computing Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Platform for Advanced Scientific Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592979.3593416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, correctly handling spatial information from multiple scales has proven to be essential in Machine Learning (ML) applications on Computational Fluid Dynamics (CFD) problems. For these type of applications, Convolutional Neural Networks (CNN) that use Multiple Downsampled Branches (MDBs) to efficiently encode spatial information from different spatial scales have proven to be some of the most successful architectures. However, not many guidelines exist to build these architectures, particularly when applied to more challenging 3D configurations. Thus, this work focuses on studying the impact of the choice of the number of down-sampled branches, accuracy and performance-wise in 3D incompressible fluid test cases, where a CNN is used to solve the Poisson equation. The influence of this parameter is assessed by performing multiple trainings of Unet architectures with varying MDBs on a cloud-computing environment. These trained networks are then tested on two 3D CFD problems: a plume and a Von Karman vortex street at various operating points, where the solution of the neural network is coupled to a nonlinear advection equation.
卷积神经网络结构在三维不可压缩流动模拟中的性能研究
最近,正确处理来自多个尺度的空间信息已被证明是机器学习(ML)应用于计算流体动力学(CFD)问题的关键。对于这些类型的应用,卷积神经网络(CNN)使用多个下采样分支(mdb)来有效地编码来自不同空间尺度的空间信息,已被证明是最成功的架构之一。然而,构建这些架构的指导方针并不多,特别是当应用于更具挑战性的3D配置时。因此,这项工作的重点是研究在3D不可压缩流体测试用例中选择下采样分支的数量、准确性和性能方面的影响,其中使用CNN来求解泊松方程。该参数的影响是通过在云计算环境中对具有不同mdb的Unet体系结构进行多次训练来评估的。这些训练好的网络随后在两个三维CFD问题上进行了测试:在不同的操作点上的羽流和冯·卡门涡街,其中神经网络的解与非线性平流方程耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信