Symmetric games with piecewise linear utilities

C. Ryan, A. Jiang, Kevin Leyton-Brown
{"title":"Symmetric games with piecewise linear utilities","authors":"C. Ryan, A. Jiang, Kevin Leyton-Brown","doi":"10.1145/1807406.1807447","DOIUrl":null,"url":null,"abstract":"We analyze the complexity of computing pure strategy Nash equilibria (PSNE) inn symmetric games with a fixed number of actions, where the utilities are compactly represented. Such a representation is able to describe symmetric games whose number of players is exponential in the representation size. We show that in the general case, where utility functions are represented as arbitrary circuits, the problem of deciding the existence of PSNE is NP-complete. For the special case of games with two actions, there always exist a PSNE and we give a polynomial algorithm for finding one. We then focus on a natural representation of utility as piecewise-linear functions, and show that such a representation has nice computational properties. In particular, we give polynomial-time algorithms to count the number of PSNE (thus deciding if such an equilibrium exists) and to find a sample PSNE, when one exists.","PeriodicalId":142982,"journal":{"name":"Behavioral and Quantitative Game Theory","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Quantitative Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807406.1807447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We analyze the complexity of computing pure strategy Nash equilibria (PSNE) inn symmetric games with a fixed number of actions, where the utilities are compactly represented. Such a representation is able to describe symmetric games whose number of players is exponential in the representation size. We show that in the general case, where utility functions are represented as arbitrary circuits, the problem of deciding the existence of PSNE is NP-complete. For the special case of games with two actions, there always exist a PSNE and we give a polynomial algorithm for finding one. We then focus on a natural representation of utility as piecewise-linear functions, and show that such a representation has nice computational properties. In particular, we give polynomial-time algorithms to count the number of PSNE (thus deciding if such an equilibrium exists) and to find a sample PSNE, when one exists.
具有分段线性效用的对称游戏
本文分析了在具有固定数量行动的对称博弈中计算纯策略纳什均衡(PSNE)的复杂性,其中效用是紧表示的。这种表示能够描述玩家数量在表示大小上呈指数增长的对称游戏。我们证明了在一般情况下,当效用函数表示为任意电路时,判定PSNE是否存在的问题是np完全的。对于双动作对策的特殊情况,总是存在一个PSNE,我们给出了一个多项式算法来寻找它。然后,我们将重点放在效用作为分段线性函数的自然表示上,并表明这种表示具有良好的计算特性。特别是,我们给出了多项式时间算法来计算PSNE的数量(从而决定是否存在这样的平衡),并在存在时找到一个样本PSNE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信