Quadrant-distance graphs: a method for visualizing neural network weight spaces

B. Linnell
{"title":"Quadrant-distance graphs: a method for visualizing neural network weight spaces","authors":"B. Linnell","doi":"10.1109/IJCNN.1999.832624","DOIUrl":null,"url":null,"abstract":"One of the major drawbacks to neural networks is the inability of the user to understand what is happening inside the network. Quadrant-distance (QD) graphs allow the user to graphically display a network's weight vector at any point in training, for networks of any size. This allows the user to quickly and easily identify similarities or differences between solution sets. QD graphs may also be used for a variety of other analysis functions, such as comparing initial weights to final weights, and observing the path of the network as it finds a solution.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.832624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the major drawbacks to neural networks is the inability of the user to understand what is happening inside the network. Quadrant-distance (QD) graphs allow the user to graphically display a network's weight vector at any point in training, for networks of any size. This allows the user to quickly and easily identify similarities or differences between solution sets. QD graphs may also be used for a variety of other analysis functions, such as comparing initial weights to final weights, and observing the path of the network as it finds a solution.
象限距离图:一种可视化神经网络权重空间的方法
神经网络的主要缺点之一是用户无法理解网络内部发生的事情。对于任何大小的网络,象限距离(QD)图允许用户在训练的任何点以图形方式显示网络的权重向量。这允许用户快速轻松地识别解决方案集之间的相似性或差异性。QD图还可以用于各种其他分析功能,例如比较初始权重和最终权重,以及在网络找到解决方案时观察网络的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信