Design and Analysis of Distributed Multi-Agent Saddle Point Algorithm Based on Gradient-Free Oracle

Chenchi Wang, Xiangpeng Xie
{"title":"Design and Analysis of Distributed Multi-Agent Saddle Point Algorithm Based on Gradient-Free Oracle","authors":"Chenchi Wang, Xiangpeng Xie","doi":"10.1109/ANZCC.2018.8606575","DOIUrl":null,"url":null,"abstract":"In the paper, we are interested in one convex-concave function problem in network applications. Motivated by the saddle-point subgradient methods, we deal with a kind of saddle-point problem for multi-agent systems whose objective function for the underlying issue must be non-smooth but Lipschitz continuous. With the convex constrain set and global convex inequality constraints, we present a kind of distributed gradient-free algorithm in order to solve the issue of multi-agent convex-concave optimization. Under Slater’s condition, We give the results of convergence rate and the effect of smoothing parameters on error bounds.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the paper, we are interested in one convex-concave function problem in network applications. Motivated by the saddle-point subgradient methods, we deal with a kind of saddle-point problem for multi-agent systems whose objective function for the underlying issue must be non-smooth but Lipschitz continuous. With the convex constrain set and global convex inequality constraints, we present a kind of distributed gradient-free algorithm in order to solve the issue of multi-agent convex-concave optimization. Under Slater’s condition, We give the results of convergence rate and the effect of smoothing parameters on error bounds.
基于无梯度Oracle的分布式多智能体鞍点算法设计与分析
本文主要研究网络应用中的一个凸凹函数问题。在鞍点亚梯度方法的激励下,我们处理了一类多智能体系统的鞍点问题,该问题的目标函数必须是非光滑但Lipschitz连续的。利用凸约束集和全局凸不等式约束,提出了一种求解多智能体凸凹优化问题的分布式无梯度算法。在Slater条件下,给出了收敛速度和平滑参数对误差界的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信