{"title":"JammingBird: Jamming-Resilient Communications for Vehicular Ad Hoc Networks","authors":"Hossein Pirayesh, Pedram Kheirkhah Sangdeh, Shichen Zhang, Qiben Yan, Huacheng Zeng","doi":"10.1109/SECON52354.2021.9491603","DOIUrl":null,"url":null,"abstract":"Current data-driven intelligent transportation systems are mainly reliant on IEEE 802.11p to collect and exchange information. Despite promising performance of IEEE 802.11p in providing low-latency communications, it is still vulnerable to jamming attacks due to the lack of a PHY-layer countermeasure technique in practice. In this paper, we propose JammingBird, a novel receiver design that tolerates strong constant jamming attacks. The enablers of JammingBird are two MIMO-based techniques: Jamming-resistant synchronizer and jamming suppressor. Collectively, these two new modules are able to detect, synchronize, and recover desired signals under jamming attacks, regardless of the PHY-layer technology employed by the jammers. We have implemented JammingBird on a vehicular testbed and conducted extensive experiments to evaluate its performance in three common vehicular scenarios: Parking lots (0~15 mph), local traffic areas (25~45 mph), and highways (60~70 mph). In our experiments, while the jamming attacks degrade the throughput of conventional 802.11p-based receivers by 86.7%, JammingBird maintains 83.0% of the throughput on average. Experimental results also show that JammingBird tolerates the jamming signals with 25 dB stronger power than the desired signals.","PeriodicalId":120945,"journal":{"name":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON52354.2021.9491603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Current data-driven intelligent transportation systems are mainly reliant on IEEE 802.11p to collect and exchange information. Despite promising performance of IEEE 802.11p in providing low-latency communications, it is still vulnerable to jamming attacks due to the lack of a PHY-layer countermeasure technique in practice. In this paper, we propose JammingBird, a novel receiver design that tolerates strong constant jamming attacks. The enablers of JammingBird are two MIMO-based techniques: Jamming-resistant synchronizer and jamming suppressor. Collectively, these two new modules are able to detect, synchronize, and recover desired signals under jamming attacks, regardless of the PHY-layer technology employed by the jammers. We have implemented JammingBird on a vehicular testbed and conducted extensive experiments to evaluate its performance in three common vehicular scenarios: Parking lots (0~15 mph), local traffic areas (25~45 mph), and highways (60~70 mph). In our experiments, while the jamming attacks degrade the throughput of conventional 802.11p-based receivers by 86.7%, JammingBird maintains 83.0% of the throughput on average. Experimental results also show that JammingBird tolerates the jamming signals with 25 dB stronger power than the desired signals.