Mobility episode detection from CDR's data using switching Kalman filter

Oleg Batrashev, Amnir Hadachi, Artjom Lind, E. Vainikko
{"title":"Mobility episode detection from CDR's data using switching Kalman filter","authors":"Oleg Batrashev, Amnir Hadachi, Artjom Lind, E. Vainikko","doi":"10.1145/2834126.2834139","DOIUrl":null,"url":null,"abstract":"The detection of stay-jump-and-moving movement episodes using only cellular data is a big challenge due to the nature of the data. In this article, we propose a method to automatically detect the movement episodes (stay-jump-and-moving) from sparsely sampled spatio-temporal data, in our case Call Detail Records (CDRs), using switching Kalman filter with a new integrated movement model and cellular coverage optimization approach. The algorithm is capable of estimating the movement episodes and classifying the trajectory sequences associated to a stay, a jump or a moving action. The result of this approach can be beneficial for applications using cellular data related to traffic management, mobility profiling, and semantic enrichment.","PeriodicalId":194029,"journal":{"name":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2834126.2834139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The detection of stay-jump-and-moving movement episodes using only cellular data is a big challenge due to the nature of the data. In this article, we propose a method to automatically detect the movement episodes (stay-jump-and-moving) from sparsely sampled spatio-temporal data, in our case Call Detail Records (CDRs), using switching Kalman filter with a new integrated movement model and cellular coverage optimization approach. The algorithm is capable of estimating the movement episodes and classifying the trajectory sequences associated to a stay, a jump or a moving action. The result of this approach can be beneficial for applications using cellular data related to traffic management, mobility profiling, and semantic enrichment.
基于切换卡尔曼滤波的CDR数据移动事件检测
由于数据的性质,仅使用蜂窝数据检测停留-跳跃和移动的运动事件是一个很大的挑战。在本文中,我们提出了一种从稀疏采样的时空数据(在我们的案例中是呼叫详细记录(CDRs))中自动检测运动事件(停留-跳跃-移动)的方法,该方法使用切换卡尔曼滤波器与新的集成运动模型和蜂窝覆盖优化方法。该算法能够估计运动事件,并对与停留、跳跃或移动动作相关的轨迹序列进行分类。这种方法的结果对于使用与流量管理、移动性分析和语义丰富相关的蜂窝数据的应用程序是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信