{"title":"L1-Penalized Quantile Regression in High Dimensional Sparse Models","authors":"V. Chernozhukov, A. Belloni","doi":"10.2139/ssrn.1394734","DOIUrl":null,"url":null,"abstract":"We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of the response variable, where s grows slower than n. Since in this case the ordinary quantile regression is not consistent, we consider quantile regression penalized by the L1-norm of coefficients (L1-QR). First, we show that L1-QR is consistent at the rate of the square root of (s/n) log p, which is close to the oracle rate of the square root of (s/n), achievable when the minimal true model is known. The overall number of regressors p affects the rate only through the log p factor, thus allowing nearly exponential growth in the number of zero-impact regressors. The rate result holds under relatively weak conditions, requiring that s/n converges to zero at a super-logarithmic speed and that regularization parameter satisfies certain theoretical constraints. Second, we propose a pivotal, data-driven choice of the regularization parameter and show that it satisfies these theoretical constraints. Third, we show that L1-QR correctly selects the true minimal model as a valid submodel, when the non-zero coefficients of the true model are well separated from zero. We also show that the number of non-zero coefficients in L1-QR is of same stochastic order as s, the number of non-zero coefficients in the minimal true model. Fourth, we analyze the rate of convergence of a two-step estimator that applies ordinary quantile regression to the selected model. Fifth, we evaluate the performance of L1-QR in a Monte-Carlo experiment, and provide an application to the analysis of the international economic growth.","PeriodicalId":219959,"journal":{"name":"ERN: Other Econometrics: Single Equation Models (Topic)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"460","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Single Equation Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1394734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 460
Abstract
We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of the response variable, where s grows slower than n. Since in this case the ordinary quantile regression is not consistent, we consider quantile regression penalized by the L1-norm of coefficients (L1-QR). First, we show that L1-QR is consistent at the rate of the square root of (s/n) log p, which is close to the oracle rate of the square root of (s/n), achievable when the minimal true model is known. The overall number of regressors p affects the rate only through the log p factor, thus allowing nearly exponential growth in the number of zero-impact regressors. The rate result holds under relatively weak conditions, requiring that s/n converges to zero at a super-logarithmic speed and that regularization parameter satisfies certain theoretical constraints. Second, we propose a pivotal, data-driven choice of the regularization parameter and show that it satisfies these theoretical constraints. Third, we show that L1-QR correctly selects the true minimal model as a valid submodel, when the non-zero coefficients of the true model are well separated from zero. We also show that the number of non-zero coefficients in L1-QR is of same stochastic order as s, the number of non-zero coefficients in the minimal true model. Fourth, we analyze the rate of convergence of a two-step estimator that applies ordinary quantile regression to the selected model. Fifth, we evaluate the performance of L1-QR in a Monte-Carlo experiment, and provide an application to the analysis of the international economic growth.