Estimating GOCI daily PAR and validation

D. Hwang, Jong-Kuk Choi, J. Ryu, R. Frouin
{"title":"Estimating GOCI daily PAR and validation","authors":"D. Hwang, Jong-Kuk Choi, J. Ryu, R. Frouin","doi":"10.1117/12.2500061","DOIUrl":null,"url":null,"abstract":"Photosynthesis available radiation (PAR) that makes primary producers to compose carbon compounds is the energy source of carbon circulation at the ocean. In these days, global scale PAR is efficiently observed from satellite remotesensing with low cost and high resolution. Here, Geostationary Ocean Color Imager (GOCI) which is geostationary orbit sensor is used to estimate daily PAR at smaller scale area for decreasing influence of diurnal variation such as cloud. GOCI daily PAR is estimated using PAR model based on Plane-parallel theory and compared with in-situ data observed during year of 2015 at two stations that has turbid and clear ocean area, respectively. Each band image of GOCI L1B data and solar altitude data are input data for PAR model to estimate daily PAR. Correlation coefficient between GOCI daily PAR and in-situ daily PAR is 0.98 and root-mean-square error (RMSE) is 4.50 Ein/m2 /day. To correct underestimated GOCI daily PAR, correction equation is developed from linear regression between GOCI daily PAR and in-situ daily PAR observed during clear sky condition days. RMSE of GOCI daily PAR which corrected with correction equation is decreased to 3.08 Ein/m2 /day and seasonal bias between GOCI and in-situ daily PAR is decreased, too. Validation is carried out with in-situ daily PAR observed during year of 2016. Correlation coefficient is 0.98 and RMSE is 2.69 Ein/m2 /day. Estimating GOCI daily PAR is expected to make accurate daily PAR by reducing meteorological element and regional error.","PeriodicalId":370971,"journal":{"name":"Asia-Pacific Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2500061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Photosynthesis available radiation (PAR) that makes primary producers to compose carbon compounds is the energy source of carbon circulation at the ocean. In these days, global scale PAR is efficiently observed from satellite remotesensing with low cost and high resolution. Here, Geostationary Ocean Color Imager (GOCI) which is geostationary orbit sensor is used to estimate daily PAR at smaller scale area for decreasing influence of diurnal variation such as cloud. GOCI daily PAR is estimated using PAR model based on Plane-parallel theory and compared with in-situ data observed during year of 2015 at two stations that has turbid and clear ocean area, respectively. Each band image of GOCI L1B data and solar altitude data are input data for PAR model to estimate daily PAR. Correlation coefficient between GOCI daily PAR and in-situ daily PAR is 0.98 and root-mean-square error (RMSE) is 4.50 Ein/m2 /day. To correct underestimated GOCI daily PAR, correction equation is developed from linear regression between GOCI daily PAR and in-situ daily PAR observed during clear sky condition days. RMSE of GOCI daily PAR which corrected with correction equation is decreased to 3.08 Ein/m2 /day and seasonal bias between GOCI and in-situ daily PAR is decreased, too. Validation is carried out with in-situ daily PAR observed during year of 2016. Correlation coefficient is 0.98 and RMSE is 2.69 Ein/m2 /day. Estimating GOCI daily PAR is expected to make accurate daily PAR by reducing meteorological element and regional error.
估算GOCI每日PAR并进行验证
光合作用有效辐射(PAR)是海洋碳循环的能量来源,它使初级生产者组成碳化合物。目前,利用卫星遥感对全球尺度PAR进行了低成本、高分辨率的有效观测。本文利用地球同步海洋彩色成像仪(GOCI)这一地球同步轨道传感器在较小尺度区域估算日PAR,以减小云等日变化的影响。利用基于平面平行理论的PAR模型估算了GOCI日PAR,并与浊海区和清海区两个站点2015年的现场观测数据进行了对比。GOCI L1B数据的各波段图像和太阳高度数据作为PAR模型估计日PAR的输入数据,GOCI日PAR与原位日PAR的相关系数为0.98,均方根误差(RMSE)为4.50 Ein/m2 /day。为了修正被低估的GOCI日PAR,将GOCI日PAR与晴空条件下的现场日PAR进行线性回归,建立了修正方程。经修正方程修正后的GOCI日PAR的RMSE降至3.08 Ein/m2 /day, GOCI与原位日PAR的季节偏差也减小。通过2016年现场每日PAR观测进行验证。相关系数为0.98,RMSE为2.69 Ein/m2 /day。估算GOCI日PAR可通过减少气象要素和区域误差得到准确的日PAR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信