A comparative study of GA and orthogonal experimental design

H. Tanaka
{"title":"A comparative study of GA and orthogonal experimental design","authors":"H. Tanaka","doi":"10.1109/ICEC.1997.592285","DOIUrl":null,"url":null,"abstract":"Our hypothesis is that traditional genetic algorithms (GA) work well because of GA encoding which uses binary variables. GA searching of recombinations or mutations can be replaced by simple statistical methods, orthogonal experimental designs (OED) and factor analysis, while using the same encoding (the same problem representation), and maintaining comparable precision with traditional GA. We describe our development of an orthogonal design algorithm (ODA) for a comparison with GA searching mechanisms. ODA uses GA encoding and OED, but uses no recombinations or mutations. ODA consists of three stages: iterative factor analysis with OED, shuffling, and correction. We compared ODA with traditional GA solving simple quadratic functions and a small protein folding problem, and get comparable results in terms of obtaining approximate solutions.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Our hypothesis is that traditional genetic algorithms (GA) work well because of GA encoding which uses binary variables. GA searching of recombinations or mutations can be replaced by simple statistical methods, orthogonal experimental designs (OED) and factor analysis, while using the same encoding (the same problem representation), and maintaining comparable precision with traditional GA. We describe our development of an orthogonal design algorithm (ODA) for a comparison with GA searching mechanisms. ODA uses GA encoding and OED, but uses no recombinations or mutations. ODA consists of three stages: iterative factor analysis with OED, shuffling, and correction. We compared ODA with traditional GA solving simple quadratic functions and a small protein folding problem, and get comparable results in terms of obtaining approximate solutions.
遗传算法与正交试验设计的比较研究
我们的假设是,传统的遗传算法(GA)之所以能很好地工作,是因为GA编码使用了二进制变量。重组或突变的遗传算法搜索可以被简单的统计方法、正交实验设计(OED)和因子分析取代,同时使用相同的编码(相同的问题表示),并保持与传统遗传算法相当的精度。我们描述了我们开发的正交设计算法(ODA)与遗传算法搜索机制的比较。ODA使用GA编码和OED,但不使用重组或突变。ODA包括三个阶段:使用OED进行迭代因子分析、洗牌和校正。我们将ODA与传统遗传算法求解简单二次函数和小蛋白质折叠问题进行了比较,并在获得近似解方面得到了相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信