An Event Detection Platform to Detect Gender Using Deep Learning

Abdulrahman Aldhaheri, Je Lee, Khaled Almgren
{"title":"An Event Detection Platform to Detect Gender Using Deep Learning","authors":"Abdulrahman Aldhaheri, Je Lee, Khaled Almgren","doi":"10.1109/UEMCON51285.2020.9298104","DOIUrl":null,"url":null,"abstract":"There are many events that occur in e-commerce platforms, which can be used to detect and understand the behavior of online users. Behavior analyses of e-commerce users can be utilized to impact both customers and businesses. Behavior analysis seeks to find useful information from clickstreams, which can be used to address challenging problems. Clickstreams quantify users’ movements based on the items they click on an e-commerce website. This work aims to mine clickstreams to predict users’ genders. The proposed approach utilizes deep learning and has been tested on a real-world dataset; the proposed approach outperformed others in terms of accuracy.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are many events that occur in e-commerce platforms, which can be used to detect and understand the behavior of online users. Behavior analyses of e-commerce users can be utilized to impact both customers and businesses. Behavior analysis seeks to find useful information from clickstreams, which can be used to address challenging problems. Clickstreams quantify users’ movements based on the items they click on an e-commerce website. This work aims to mine clickstreams to predict users’ genders. The proposed approach utilizes deep learning and has been tested on a real-world dataset; the proposed approach outperformed others in terms of accuracy.
基于深度学习的事件性别检测平台
电子商务平台中发生的事件很多,可以用来检测和了解在线用户的行为。电子商务用户的行为分析可以用来影响客户和企业。行为分析旨在从点击流中找到有用的信息,这些信息可以用来解决具有挑战性的问题。点击流根据用户在电子商务网站上点击的物品来量化用户的活动。这项工作旨在挖掘点击流来预测用户的性别。所提出的方法利用了深度学习,并已在真实数据集上进行了测试;所提出的方法在准确性方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信