Direct-path Delay Estimation under Closely-spaced Multipath Interference

Wentao Wang, Yuyao Shen, Yongqing Wang
{"title":"Direct-path Delay Estimation under Closely-spaced Multipath Interference","authors":"Wentao Wang, Yuyao Shen, Yongqing Wang","doi":"10.23919/URSIGASS51995.2021.9560267","DOIUrl":null,"url":null,"abstract":"For direct sequence spread spectrum (DSSS) signal, the minimum mean square error (MMSE) algorithms based on reiterative inverse filters have good delay resolution under closely-spaced multipath interference. However, the limited density of the correlator function dictionary leads to a model error of the filter. Under the inexact model, the performance of delay estimation decreases. To address this problem, we add a group of correction parameters into the dictionary matrix and estimate them in the reiterative filtering. Based on the sparsity of correction parameters, a threshold decision is adopted to sift the parameters that need to be estimated by maximum likelihood (ML) search. The parameters that fail to pass the threshold are set to zero. Simulation results show that, compared with least squares (LS) and MMSE algorithms, the proposed algorithm can improve the performance of delay estimation.","PeriodicalId":152047,"journal":{"name":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS51995.2021.9560267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For direct sequence spread spectrum (DSSS) signal, the minimum mean square error (MMSE) algorithms based on reiterative inverse filters have good delay resolution under closely-spaced multipath interference. However, the limited density of the correlator function dictionary leads to a model error of the filter. Under the inexact model, the performance of delay estimation decreases. To address this problem, we add a group of correction parameters into the dictionary matrix and estimate them in the reiterative filtering. Based on the sparsity of correction parameters, a threshold decision is adopted to sift the parameters that need to be estimated by maximum likelihood (ML) search. The parameters that fail to pass the threshold are set to zero. Simulation results show that, compared with least squares (LS) and MMSE algorithms, the proposed algorithm can improve the performance of delay estimation.
近间隔多径干扰下的直接路径延迟估计
对于直接序列扩频(DSSS)信号,基于迭代反滤波器的最小均方误差(MMSE)算法在近间隔多径干扰下具有良好的延迟分辨率。然而,相关函数字典的有限密度导致了滤波器的模型误差。在不精确的模型下,延迟估计的性能下降。为了解决这个问题,我们在字典矩阵中加入一组校正参数,并在迭代滤波中估计它们。基于校正参数的稀疏性,采用阈值决策对需要进行最大似然搜索估计的参数进行筛选。未通过阈值的参数设置为零。仿真结果表明,与最小二乘(LS)和MMSE算法相比,该算法可以提高时延估计的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信