Iterative MAP and ML Estimations for Image Segmentation

Shifeng Chen, Liangliang Cao, Jianzhuang Liu, Xiaoou Tang
{"title":"Iterative MAP and ML Estimations for Image Segmentation","authors":"Shifeng Chen, Liangliang Cao, Jianzhuang Liu, Xiaoou Tang","doi":"10.1109/CVPR.2007.383007","DOIUrl":null,"url":null,"abstract":"Image segmentation plays an important role in computer vision and image analysis. In this paper, the segmentation problem is formulated as a labeling problem under a probability maximization framework. To estimate the label configuration, an iterative optimization scheme is proposed to alternately carry out the maximum a posteriori (MAP) estimation and the maximum-likelihood (ML) estimation. The MAP estimation problem is modeled with Markov random fields (MRFs). A graph-cut algorithm is used to find the solution to the MAP-MRF estimation. The ML estimation is achieved by finding the means of region features. Our algorithm can automatically segment an image into regions with relevant textures or colors without the need to know the number of regions in advance. In addition, under the same framework, it can be extended to another algorithm that extracts objects of a particular class from a group of images. Extensive experiments have shown the effectiveness of our approach.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Image segmentation plays an important role in computer vision and image analysis. In this paper, the segmentation problem is formulated as a labeling problem under a probability maximization framework. To estimate the label configuration, an iterative optimization scheme is proposed to alternately carry out the maximum a posteriori (MAP) estimation and the maximum-likelihood (ML) estimation. The MAP estimation problem is modeled with Markov random fields (MRFs). A graph-cut algorithm is used to find the solution to the MAP-MRF estimation. The ML estimation is achieved by finding the means of region features. Our algorithm can automatically segment an image into regions with relevant textures or colors without the need to know the number of regions in advance. In addition, under the same framework, it can be extended to another algorithm that extracts objects of a particular class from a group of images. Extensive experiments have shown the effectiveness of our approach.
图像分割的迭代MAP和ML估计
图像分割在计算机视觉和图像分析中占有重要的地位。本文将分割问题表述为概率最大化框架下的标注问题。为了估计标签配置,提出了一种迭代优化方案,交替进行最大后验估计(MAP)和最大似然估计(ML)。利用马尔可夫随机场(mrf)对MAP估计问题进行建模。采用图切算法求解MAP-MRF估计问题。机器学习估计是通过寻找区域特征的均值来实现的。我们的算法可以自动将图像分割成具有相关纹理或颜色的区域,而无需事先知道区域的数量。此外,在相同的框架下,它还可以扩展为从一组图像中提取特定类对象的另一种算法。大量的实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信