Interference alignment in cognitive network with cooperative primary users

Jiazhen Li, Li Guo, Chao Dong, Tianyu Kang
{"title":"Interference alignment in cognitive network with cooperative primary users","authors":"Jiazhen Li, Li Guo, Chao Dong, Tianyu Kang","doi":"10.1109/ICNIDC.2016.7974574","DOIUrl":null,"url":null,"abstract":"This paper considers a network consists of multiple primary users (PUs) and secondary users (SUs). To seek for the pre- and post-coding matrices of the PUs and SUs that improve the system output, the author applies Max-SINR algorithm for the PUs and cognitive interference alignment (IA) for the SUs. Then by counting the number of variables and the number of equations in the IA condition, this paper analyzes the achievable DoF of all users. Simulation results show that the PUs using max-SINR achieve higher rate than using standard IA with negligible SUs rate reduction.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a network consists of multiple primary users (PUs) and secondary users (SUs). To seek for the pre- and post-coding matrices of the PUs and SUs that improve the system output, the author applies Max-SINR algorithm for the PUs and cognitive interference alignment (IA) for the SUs. Then by counting the number of variables and the number of equations in the IA condition, this paper analyzes the achievable DoF of all users. Simulation results show that the PUs using max-SINR achieve higher rate than using standard IA with negligible SUs rate reduction.
协同主用户认知网络中的干扰对齐
本文考虑一个由多个主用户(pu)和从用户(su)组成的网络。为了寻找提高系统输出的pu和su的编码前和编码后矩阵,作者对pu采用Max-SINR算法,对su采用认知干扰对齐(IA)。然后通过计算IA条件下的变量数和方程数,分析了所有用户可实现的自由度。仿真结果表明,使用max-SINR的pu比使用标准IA的pu获得更高的速率,而SUs速率降低可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信