Human activity recognition using a fuzzy inference system

M. Helmi, S. Almodarresi
{"title":"Human activity recognition using a fuzzy inference system","authors":"M. Helmi, S. Almodarresi","doi":"10.1109/FUZZY.2009.5277329","DOIUrl":null,"url":null,"abstract":"This paper presents a fuzzy inference system (FIS) for recognizing human activities using a triaxial accelerometer. The accelerometer is used to collect human motion acceleration data for classifying four different activities: moving forward, jumping, going upstairs, and going downstairs. Three different features including peak to peak amplitude, standard deviation, and correlation between axes are extracted from each axis of the accelerometer as inputs to the fuzzy system. The fuzzy rules and the membership functions of this fuzzy system are defined based on the experimental values of these features. The experiments show that the proposed fuzzy inference system recognizes moving forward, jumping, going upstairs, and going downstairs with accuracy of 100%, 96.7%, 93.3%, and 93.3%, respectively.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper presents a fuzzy inference system (FIS) for recognizing human activities using a triaxial accelerometer. The accelerometer is used to collect human motion acceleration data for classifying four different activities: moving forward, jumping, going upstairs, and going downstairs. Three different features including peak to peak amplitude, standard deviation, and correlation between axes are extracted from each axis of the accelerometer as inputs to the fuzzy system. The fuzzy rules and the membership functions of this fuzzy system are defined based on the experimental values of these features. The experiments show that the proposed fuzzy inference system recognizes moving forward, jumping, going upstairs, and going downstairs with accuracy of 100%, 96.7%, 93.3%, and 93.3%, respectively.
基于模糊推理的人体活动识别系统
提出了一种利用三轴加速度计识别人体活动的模糊推理系统。加速度计用于收集人体运动加速度数据,用于分类四种不同的活动:向前移动、跳跃、上楼和下楼。从加速度计的每个轴中提取三个不同的特征,包括峰值幅值、标准差和轴之间的相关性,作为模糊系统的输入。根据这些特征的实验值,定义了模糊规则和模糊系统的隶属函数。实验表明,本文提出的模糊推理系统对向前移动、跳跃、上楼和下楼的识别准确率分别为100%、96.7%、93.3%和93.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信