Empirical Web server power modeling and characterization

Leonardo Piga, R. Bergamaschi, F. Klein, R. Azevedo, S. Rigo
{"title":"Empirical Web server power modeling and characterization","authors":"Leonardo Piga, R. Bergamaschi, F. Klein, R. Azevedo, S. Rigo","doi":"10.1109/IISWC.2011.6114200","DOIUrl":null,"url":null,"abstract":"Commodity processors, which are prevalent in Internet-based data centers, do not have internal sensors for monitoring energy consumption. Such processors usually feature performance counters which can be used to indirectly estimate power consumption [1]. The usual approach in those studies is to derive linear power models based on the usage numbers collected for the processor sub-components such as caches and branch predictor. These models are usually targeted to CPU-bound applications which need more CPU performance counter parameters and display high CPU usage most of time. On a Web server environment, the applications are mostly I/O-bound which creates non-linear effects among server statistics of performance and power, making these models less suitable for Web servers. This paper presents a new approach for power models for Web servers, based on ranges of CPU usage values and performance server statistics. This new method softens non-linear relationship between server statistics and power consumption on linear power models improving their accuracy.","PeriodicalId":367515,"journal":{"name":"2011 IEEE International Symposium on Workload Characterization (IISWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2011.6114200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Commodity processors, which are prevalent in Internet-based data centers, do not have internal sensors for monitoring energy consumption. Such processors usually feature performance counters which can be used to indirectly estimate power consumption [1]. The usual approach in those studies is to derive linear power models based on the usage numbers collected for the processor sub-components such as caches and branch predictor. These models are usually targeted to CPU-bound applications which need more CPU performance counter parameters and display high CPU usage most of time. On a Web server environment, the applications are mostly I/O-bound which creates non-linear effects among server statistics of performance and power, making these models less suitable for Web servers. This paper presents a new approach for power models for Web servers, based on ranges of CPU usage values and performance server statistics. This new method softens non-linear relationship between server statistics and power consumption on linear power models improving their accuracy.
经验Web服务器功率建模和表征
在基于互联网的数据中心中普遍存在的商品处理器没有内部传感器来监测能源消耗。此类处理器通常具有性能计数器,可用于间接估计功耗[1]。在这些研究中,通常的方法是基于为处理器子组件(如缓存和分支预测器)收集的使用数字推导线性功率模型。这些模型通常针对CPU密集型应用程序,这些应用程序需要更多的CPU性能计数器参数,并且大多数时候显示高CPU使用率。在Web服务器环境中,应用程序大多是I/ o绑定的,这会在服务器性能和功耗统计数据之间产生非线性影响,使得这些模型不太适合Web服务器。本文提出了一种基于CPU使用值范围和性能服务器统计数据的Web服务器功率模型的新方法。该方法软化了线性功率模型中服务器统计数据与功耗之间的非线性关系,提高了模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信