Input Variables Selection Using Mutual Information for Neuro Fuzzy Modeling with the Application to Time Series Forecasting

M. Yousefi, M. Mirmomeni, C. Lucas
{"title":"Input Variables Selection Using Mutual Information for Neuro Fuzzy Modeling with the Application to Time Series Forecasting","authors":"M. Yousefi, M. Mirmomeni, C. Lucas","doi":"10.1109/IJCNN.2007.4371115","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology to select input variables for time series prediction. A main motivation is to find some proper input variables which describe the time series dynamics properly. It is shown that even when the choice of input variables is confined to the lagged values of the process to be predicted, a nonlinear analysis of the most significant factors is crucial for improving the prediction quality. The proposed method is used to select the appropriate input variables for neuro fuzzy models utilized for time series prediction benchmark in NN3 competition as well as a second benchmark to show the generality of the claims. Results depict the effectiveness of the proposed method in proper input selection for neuro fuzzy models for prediction task.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a methodology to select input variables for time series prediction. A main motivation is to find some proper input variables which describe the time series dynamics properly. It is shown that even when the choice of input variables is confined to the lagged values of the process to be predicted, a nonlinear analysis of the most significant factors is crucial for improving the prediction quality. The proposed method is used to select the appropriate input variables for neuro fuzzy models utilized for time series prediction benchmark in NN3 competition as well as a second benchmark to show the generality of the claims. Results depict the effectiveness of the proposed method in proper input selection for neuro fuzzy models for prediction task.
基于互信息的神经模糊模型输入变量选择及其在时间序列预测中的应用
本文提出了一种选择时间序列预测输入变量的方法。一个主要的动机是找到一些适当的输入变量来适当地描述时间序列动力学。结果表明,即使输入变量的选择仅限于待预测过程的滞后值,对最重要因素的非线性分析对于提高预测质量至关重要。该方法用于为NN3竞争中用于时间序列预测基准的神经模糊模型选择适当的输入变量,以及用于显示索赔的一般性的第二基准。结果表明,该方法在神经模糊模型预测任务的输入选择上是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信