Abordagem Preditiva de Quebras Baseada em Logs de Eventos na Indústria Automotiva

Thiago Domingos Lemos, Luiz Augusto Zelaquett De Souza
{"title":"Abordagem Preditiva de Quebras Baseada em Logs de Eventos na Indústria Automotiva","authors":"Thiago Domingos Lemos, Luiz Augusto Zelaquett De Souza","doi":"10.25286/repa.v7i3.2460","DOIUrl":null,"url":null,"abstract":"Nas últimas décadas, a indústria automobilística vem experimentando diversas e significativas mudanças. A Indústria 4.0 surge neste contexto aspirando a um alto nível de conectividade ao longo de todo o ciclo de vida do produto, exigindo cada vez mais tecnologias de controles de dados, permitindo o desenvolvimento da manutenção preditiva. O presente trabalho focaliza na abordagem da manutenção preditiva estatística, através da análise de logs de falhas de um grupo específico e semelhante de máquinas, tendo como objetivo o desenvolvimento de um modelo preditivo de quebras. A abordagem de aprendizado de máquina foi escolhida devido à sua capacidade de previsão de variáveis-saída a partir de dados históricos como entrada. Nossos dados foram coletados ao longo de vários anos de 400 robôs de um grande fabricante desses tipos de braços robotizados. Por fim foi obtida uma configuração final do modelo através da aplicação de uma rede neural artificial.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/repa.v7i3.2460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nas últimas décadas, a indústria automobilística vem experimentando diversas e significativas mudanças. A Indústria 4.0 surge neste contexto aspirando a um alto nível de conectividade ao longo de todo o ciclo de vida do produto, exigindo cada vez mais tecnologias de controles de dados, permitindo o desenvolvimento da manutenção preditiva. O presente trabalho focaliza na abordagem da manutenção preditiva estatística, através da análise de logs de falhas de um grupo específico e semelhante de máquinas, tendo como objetivo o desenvolvimento de um modelo preditivo de quebras. A abordagem de aprendizado de máquina foi escolhida devido à sua capacidade de previsão de variáveis-saída a partir de dados históricos como entrada. Nossos dados foram coletados ao longo de vários anos de 400 robôs de um grande fabricante desses tipos de braços robotizados. Por fim foi obtida uma configuração final do modelo através da aplicação de uma rede neural artificial.
汽车行业基于事件日志的故障预测方法
近几十年来,汽车工业经历了几次重大变化。在这种背景下,工业4.0出现了,它渴望在整个产品生命周期中实现高水平的连接,对数据控制技术的要求越来越高,允许预测性维护的发展。这项工作的重点是统计预测维修的方法,通过分析一个特定的和类似的机器组的故障日志,旨在发展一个故障预测模型。之所以选择机器学习方法,是因为它能够从历史数据作为输入预测变量输出。我们的数据是在几年的时间里收集的,来自一家大型机械臂制造商的400个机器人。最后,应用人工神经网络得到了模型的最终配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信