Interpolation capability of the periodic radial basis function

Y. Abe, Y. Iiguni
{"title":"Interpolation capability of the periodic radial basis function","authors":"Y. Abe, Y. Iiguni","doi":"10.1049/IP-VIS:20050259","DOIUrl":null,"url":null,"abstract":"A periodic radial basis function (RBF) network is proposed based on the regularization approach. The periodic RBF network can interpolate discrete data more efficiently than the conventional one since the coefficients of the network can be computed by using the fast Fourier transform (FFT). For the evaluation of the interpolation capability, the frequency response of the periodic RBF network is analyzed. It is then shown that the frequency response is asymptotically equivalent to the ideal sine interpolation, and that the periodic RBF network is closer to the ideal sine interpolation than the cubic spline and Lanczos interpolations","PeriodicalId":425178,"journal":{"name":"2005 5th International Conference on Information Communications & Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 5th International Conference on Information Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IP-VIS:20050259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A periodic radial basis function (RBF) network is proposed based on the regularization approach. The periodic RBF network can interpolate discrete data more efficiently than the conventional one since the coefficients of the network can be computed by using the fast Fourier transform (FFT). For the evaluation of the interpolation capability, the frequency response of the periodic RBF network is analyzed. It is then shown that the frequency response is asymptotically equivalent to the ideal sine interpolation, and that the periodic RBF network is closer to the ideal sine interpolation than the cubic spline and Lanczos interpolations
周期径向基函数的插补能力
提出了一种基于正则化方法的周期径向基函数(RBF)网络。周期RBF网络可以通过快速傅里叶变换(FFT)来计算网络的系数,因此可以比传统网络更有效地插值离散数据。为了评价周期RBF网络的插补能力,分析了周期RBF网络的频率响应。结果表明,周期RBF网络的频率响应渐近等价于理想正弦插值,且周期RBF网络比三次样条插值和Lanczos插值更接近于理想正弦插值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信