Deep Spherical Gaussian Illumination Estimation for Indoor Scene

Mengtian Li, Jie Guo, Xiufen Cui, Rui Pan, Yanwen Guo, Chenchen Wang, Piaopiao Yu, Fei Pan
{"title":"Deep Spherical Gaussian Illumination Estimation for Indoor Scene","authors":"Mengtian Li, Jie Guo, Xiufen Cui, Rui Pan, Yanwen Guo, Chenchen Wang, Piaopiao Yu, Fei Pan","doi":"10.1145/3338533.3366562","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a learning-based method to estimate high dynamic range (HDR) indoor illumination from only a single low dynamic range (LDR) photograph of limited field-of-view. Considering the extreme complexity of indoor illumination that is virtually impossible to reconstruct perfectly, we choose to encode the environmental illumination in Spherical Gaussian (SG) functions with fixed centering directions and bandwidth and only allow the weights vary. An end-to-end convolutional neural network (CNN) is designed and trained to build the complex relationship between a photograph and its illumination represented by SG functions. Moreover, we employ a masked L2 loss instead of naive L2 loss to avoid the loss of high frequency information, and propose a glossy loss to improve the rendering quality. Our experiments demonstrate that the proposed approach outperforms the state-of-the-arts both qualitatively and quantitatively.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we propose a learning-based method to estimate high dynamic range (HDR) indoor illumination from only a single low dynamic range (LDR) photograph of limited field-of-view. Considering the extreme complexity of indoor illumination that is virtually impossible to reconstruct perfectly, we choose to encode the environmental illumination in Spherical Gaussian (SG) functions with fixed centering directions and bandwidth and only allow the weights vary. An end-to-end convolutional neural network (CNN) is designed and trained to build the complex relationship between a photograph and its illumination represented by SG functions. Moreover, we employ a masked L2 loss instead of naive L2 loss to avoid the loss of high frequency information, and propose a glossy loss to improve the rendering quality. Our experiments demonstrate that the proposed approach outperforms the state-of-the-arts both qualitatively and quantitatively.
室内场景深球面高斯照明估计
在本文中,我们提出了一种基于学习的方法,仅从单张有限视场的低动态范围(LDR)照片中估计高动态范围(HDR)室内照明。考虑到室内照明的极端复杂性,几乎不可能完美地重建,我们选择将环境照明编码为具有固定定心方向和带宽的球面高斯(SG)函数,并且只允许权值变化。设计并训练了一个端到端卷积神经网络(CNN),以建立照片与其由SG函数表示的光照之间的复杂关系。此外,我们采用了掩蔽L2损耗而不是原始L2损耗来避免高频信息的丢失,并提出了平滑损耗来提高渲染质量。我们的实验表明,所提出的方法在定性和定量上都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信