Accuracy and stability analysis of the Semi-Lagrangian method for stiff hyperbolic relaxation systems and kinetic BGK model

Mingchang Ding, Jing-Mei Qiu, Ruiwen Shu
{"title":"Accuracy and stability analysis of the Semi-Lagrangian method for stiff hyperbolic relaxation systems and kinetic BGK model","authors":"Mingchang Ding, Jing-Mei Qiu, Ruiwen Shu","doi":"10.1137/21m141871x","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a family of third order asymptotic-preserving (AP) and asymptotically accurate (AA) diagonally implicit Runge-Kutta (DIRK) time discretization methods for the stiff hyperbolic relaxation systems and kinetic Bhatnagar-Gross-Krook (BGK) model in the semi-Lagrangian (SL) setting. The methods are constructed based on an accuracy analysis of the SL scheme for stiff hyperbolic relaxation systems and kinetic BGK model in the limiting fluid regime when the Knudsen number approaches $0$. An extra order condition for the asymptotic third order accuracy in the limiting regime is derived. Linear Von Neumann stability analysis of the proposed third order DIRK methods are performed to a simplified two-velocity linear kinetic model. Extensive numerical tests are presented to demonstrate the AA, AP and stability properties of our proposed schemes.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m141871x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we develop a family of third order asymptotic-preserving (AP) and asymptotically accurate (AA) diagonally implicit Runge-Kutta (DIRK) time discretization methods for the stiff hyperbolic relaxation systems and kinetic Bhatnagar-Gross-Krook (BGK) model in the semi-Lagrangian (SL) setting. The methods are constructed based on an accuracy analysis of the SL scheme for stiff hyperbolic relaxation systems and kinetic BGK model in the limiting fluid regime when the Knudsen number approaches $0$. An extra order condition for the asymptotic third order accuracy in the limiting regime is derived. Linear Von Neumann stability analysis of the proposed third order DIRK methods are performed to a simplified two-velocity linear kinetic model. Extensive numerical tests are presented to demonstrate the AA, AP and stability properties of our proposed schemes.
刚性双曲松弛系统半拉格朗日方法的精度和稳定性分析及动力学BGK模型
本文研究了半拉格朗日(SL)条件下刚性双曲松弛系统和动力学Bhatnagar-Gross-Krook (BGK)模型的三阶渐近保持(AP)和渐近精确(AA)对角隐式Runge-Kutta (DIRK)时间离散化方法。基于对刚性双曲松弛系统的SL格式和Knudsen数趋近于0时极限流体状态下的动力学BGK模型的精度分析,构建了这些方法。导出了极限区域内三阶精度渐近的一个附加阶条件。对简化的两速线性动力学模型进行了三阶DIRK方法的线性Von Neumann稳定性分析。大量的数值试验证明了我们提出的方案的AA、AP和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信