{"title":"Focusing computational visual attention in multi-modal human-robot interaction","authors":"Boris Schauerte, G. Fink","doi":"10.1145/1891903.1891912","DOIUrl":null,"url":null,"abstract":"Identifying verbally and non-verbally referred-to objects is an important aspect of human-robot interaction. Most importantly, it is essential to achieve a joint focus of attention and, thus, a natural interaction behavior. In this contribution, we introduce a saliency-based model that reflects how multi-modal referring acts influence the visual search, i.e. the task to find a specific object in a scene. Therefore, we combine positional information obtained from pointing gestures with contextual knowledge about the visual appearance of the referred-to object obtained from language. The available information is then integrated into a biologically-motivated saliency model that forms the basis for visual search. We prove the feasibility of the proposed approach by presenting the results of an experimental evaluation.","PeriodicalId":181145,"journal":{"name":"ICMI-MLMI '10","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMI-MLMI '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1891903.1891912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
Identifying verbally and non-verbally referred-to objects is an important aspect of human-robot interaction. Most importantly, it is essential to achieve a joint focus of attention and, thus, a natural interaction behavior. In this contribution, we introduce a saliency-based model that reflects how multi-modal referring acts influence the visual search, i.e. the task to find a specific object in a scene. Therefore, we combine positional information obtained from pointing gestures with contextual knowledge about the visual appearance of the referred-to object obtained from language. The available information is then integrated into a biologically-motivated saliency model that forms the basis for visual search. We prove the feasibility of the proposed approach by presenting the results of an experimental evaluation.