Decentralized Federated Learning With Asynchronous Parameter Sharing

Haihui Xie, M. Xia, Peiran Wu, Shuai Wang, Kaibin Huang
{"title":"Decentralized Federated Learning With Asynchronous Parameter Sharing","authors":"Haihui Xie, M. Xia, Peiran Wu, Shuai Wang, Kaibin Huang","doi":"10.1109/ICCCWorkshops57813.2023.10233712","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) enables wireless terminals to collaboratively learn a shared parameter model while keeping all the training data on devices per se. Whatever parameter sharing is applied, the learning model shall adapt to distinct network architectures because an improper learning model will deteriorate learning performance and, even worse, lead to model divergence, especially for the asynchronous transmission in resource-limited distributed networks. To address this issue, this paper proposes a decentralized learning model and develops an asynchronous parameter-sharing algorithm for resource-limited distributed Internet of Things (IoT) networks. It can improve learning efficiency and realize efficient communication. By jointly accounting for the convergence bound of federated learning and the transmission delay of wireless communications, we develop a node scheduling and bandwidth allocation algorithm to improve the learning performance. Extensive simulation results corroborate the effectiveness of the distributed algorithm in terms of fast learning model convergence and low transmission delay.","PeriodicalId":201450,"journal":{"name":"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops57813.2023.10233712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning (FL) enables wireless terminals to collaboratively learn a shared parameter model while keeping all the training data on devices per se. Whatever parameter sharing is applied, the learning model shall adapt to distinct network architectures because an improper learning model will deteriorate learning performance and, even worse, lead to model divergence, especially for the asynchronous transmission in resource-limited distributed networks. To address this issue, this paper proposes a decentralized learning model and develops an asynchronous parameter-sharing algorithm for resource-limited distributed Internet of Things (IoT) networks. It can improve learning efficiency and realize efficient communication. By jointly accounting for the convergence bound of federated learning and the transmission delay of wireless communications, we develop a node scheduling and bandwidth allocation algorithm to improve the learning performance. Extensive simulation results corroborate the effectiveness of the distributed algorithm in terms of fast learning model convergence and low transmission delay.
异步参数共享的分散联邦学习
联邦学习(FL)使无线终端能够协作学习共享参数模型,同时将所有训练数据保留在设备本身上。无论采用何种参数共享方式,学习模型都要适应不同的网络架构,因为学习模型不恰当会导致学习性能下降,甚至导致模型发散,特别是对于资源有限的分布式网络中的异步传输。为了解决这一问题,本文提出了一种分散学习模型,并针对资源有限的分布式物联网(IoT)网络开发了一种异步参数共享算法。它可以提高学习效率,实现高效的交流。通过综合考虑联邦学习的收敛界和无线通信的传输延迟,我们开发了一种节点调度和带宽分配算法来提高学习性能。大量的仿真结果证实了分布式算法在快速学习模型收敛和低传输延迟方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信