{"title":"State identification for planetary rovers: learning and recognition","authors":"O. Aycard, R. Washington","doi":"10.1109/ROBOT.2000.844756","DOIUrl":null,"url":null,"abstract":"A planetary rover must be able to identify states where it should stop or change its plan. With limited and infrequent communication from ground, the rover must recognize states accurately. However, the sensor data is inherently noisy, so identifying the temporal patterns of data that correspond to interesting or important states becomes a complex problem. We present an approach to state identification using second-order hidden Markov models. Models are trained automatically on a set of labeled training data; the rover uses those models to identify its state from the observed data. The approach is demonstrated on data from a planetary rover platform.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.844756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A planetary rover must be able to identify states where it should stop or change its plan. With limited and infrequent communication from ground, the rover must recognize states accurately. However, the sensor data is inherently noisy, so identifying the temporal patterns of data that correspond to interesting or important states becomes a complex problem. We present an approach to state identification using second-order hidden Markov models. Models are trained automatically on a set of labeled training data; the rover uses those models to identify its state from the observed data. The approach is demonstrated on data from a planetary rover platform.