Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media

NUT@EMNLP Pub Date : 2017-09-01 DOI:10.18653/v1/W17-4421
Bill Yuchen Lin, Frank F. Xu, Zhiyi Luo, Kenny Q. Zhu
{"title":"Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media","authors":"Bill Yuchen Lin, Frank F. Xu, Zhiyi Luo, Kenny Q. Zhu","doi":"10.18653/v1/W17-4421","DOIUrl":null,"url":null,"abstract":"In this paper, we present our multi-channel neural architecture for recognizing emerging named entity in social media messages, which we applied in the Novel and Emerging Named Entity Recognition shared task at the EMNLP 2017 Workshop on Noisy User-generated Text (W-NUT). We propose a novel approach, which incorporates comprehensive word representations with multi-channel information and Conditional Random Fields (CRF) into a traditional Bidirectional Long Short-Term Memory (BiLSTM) neural network without using any additional hand-craft features such as gazetteers. In comparison with other systems participating in the shared task, our system won the 2nd place.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

Abstract

In this paper, we present our multi-channel neural architecture for recognizing emerging named entity in social media messages, which we applied in the Novel and Emerging Named Entity Recognition shared task at the EMNLP 2017 Workshop on Noisy User-generated Text (W-NUT). We propose a novel approach, which incorporates comprehensive word representations with multi-channel information and Conditional Random Fields (CRF) into a traditional Bidirectional Long Short-Term Memory (BiLSTM) neural network without using any additional hand-craft features such as gazetteers. In comparison with other systems participating in the shared task, our system won the 2nd place.
社交媒体新兴命名实体识别的多通道BiLSTM-CRF模型
在本文中,我们提出了用于识别社交媒体消息中新兴命名实体的多通道神经架构,并将其应用于EMNLP 2017年噪声用户生成文本(W-NUT)研讨会上的新型和新兴命名实体识别共享任务。我们提出了一种新的方法,该方法将具有多通道信息和条件随机场(CRF)的综合单词表示合并到传统的双向长短期记忆(BiLSTM)神经网络中,而不使用任何额外的手工特征,如词典。与其他参与共享任务的系统相比,我们的系统获得了第二名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信