Combined statistical and geometrical 3D segmentation and measurement of brain structures

M. G. González Ballester, Andrew Zisserman, M. Brady
{"title":"Combined statistical and geometrical 3D segmentation and measurement of brain structures","authors":"M. G. González Ballester, Andrew Zisserman, M. Brady","doi":"10.1109/BIA.1998.692379","DOIUrl":null,"url":null,"abstract":"Presents a novel method for three-dimensional segmentation and measurement of volumetric data based on the combination of statistical and geometrical information. The problem of shape representation of very complex three-dimensional structures, such as the brain cortex, is approached by combining the use of a discrete 3D mesh (the simplex mesh) with the construction of a smooth surface using triangular Gregory-Bezier patches. A Gaussian model for the tissues present in the image is adopted and a classification procedure which also estimates and corrects for the bias field present in the MRI is used. Confidence bounds are produced for all the measurements, thus obtaining a distribution on the position of the surface segmenting the image as the output of the method. Performance is tested both on real data and simulations of MR volumes, which provide ground truth. The method is also compared with other existing techniques.","PeriodicalId":261632,"journal":{"name":"Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA.1998.692379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Presents a novel method for three-dimensional segmentation and measurement of volumetric data based on the combination of statistical and geometrical information. The problem of shape representation of very complex three-dimensional structures, such as the brain cortex, is approached by combining the use of a discrete 3D mesh (the simplex mesh) with the construction of a smooth surface using triangular Gregory-Bezier patches. A Gaussian model for the tissues present in the image is adopted and a classification procedure which also estimates and corrects for the bias field present in the MRI is used. Confidence bounds are produced for all the measurements, thus obtaining a distribution on the position of the surface segmenting the image as the output of the method. Performance is tested both on real data and simulations of MR volumes, which provide ground truth. The method is also compared with other existing techniques.
结合统计和几何三维脑结构分割和测量
提出了一种基于统计信息和几何信息相结合的体积数据三维分割与测量新方法。非常复杂的三维结构(如大脑皮层)的形状表示问题,是通过结合使用离散三维网格(单纯形网格)和使用三角形格里高利-贝塞尔补丁构建光滑表面来解决的。对图像中存在的组织采用高斯模型,并使用一种分类程序来估计和校正MRI中存在的偏置场。为所有测量产生置信限,从而获得分割图像的表面位置的分布作为该方法的输出。性能在真实数据和MR体积模拟上进行了测试,这提供了基本的事实。并与其他现有技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信