{"title":"Texture based classification of mass abnormalities in mammograms","authors":"Sooncheol Baeg, N. Kehtarnavaz","doi":"10.1109/CBMS.2000.856894","DOIUrl":null,"url":null,"abstract":"This paper presents a scheme for the classification of mass abnormalities in digitized or digital mammograms based on two novel image texture features. The first texture feature provides a measure of smoothness/denseness and is obtained by applying a morphological operator to maxima/minima image points. The second texture feature reflects a measure of architectural distortion and is derived from image gradients. A three-layer backpropagation neural network is used as the classifier. The performance of the classification scheme is evaluated by carrying out a receiver operating characteristic (ROC) analysis. Classification of 150 biopsy proven masses into benign and malignant classes resulted in a ROC area of 0.91. The results obtained demonstrate the potential of using this scheme as an electronic second opinion to lower the number of unnecessary biopsies.","PeriodicalId":189930,"journal":{"name":"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2000.856894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
This paper presents a scheme for the classification of mass abnormalities in digitized or digital mammograms based on two novel image texture features. The first texture feature provides a measure of smoothness/denseness and is obtained by applying a morphological operator to maxima/minima image points. The second texture feature reflects a measure of architectural distortion and is derived from image gradients. A three-layer backpropagation neural network is used as the classifier. The performance of the classification scheme is evaluated by carrying out a receiver operating characteristic (ROC) analysis. Classification of 150 biopsy proven masses into benign and malignant classes resulted in a ROC area of 0.91. The results obtained demonstrate the potential of using this scheme as an electronic second opinion to lower the number of unnecessary biopsies.