{"title":"Numerical calculations of a high power CW CO2 gas-dynamic laser","authors":"S. Al‐Hawat, K. Al-Mutaib","doi":"10.1117/12.793392","DOIUrl":null,"url":null,"abstract":"Numerical solution of gas-dynamic laser equations in a gas mixture CO2:N2:H2O was carried out, using five-temperature-model (one translational and four vibrational temperatures) by a computational program written in FORTRAN. The spatial distributions of population inversion, gain and temperatures of the gas flow, in addition to the laser intensity and power extraction were studied inside the cavity, for certain initial conditions like pressure (p0=20 atm), temperature (T0= 1500 K), ratio of gases in the laser mixture (CO2:N2:H2O ≡ 10:85:5).","PeriodicalId":300417,"journal":{"name":"Advanced Optoelectronics and Lasers","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optoelectronics and Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.793392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Numerical solution of gas-dynamic laser equations in a gas mixture CO2:N2:H2O was carried out, using five-temperature-model (one translational and four vibrational temperatures) by a computational program written in FORTRAN. The spatial distributions of population inversion, gain and temperatures of the gas flow, in addition to the laser intensity and power extraction were studied inside the cavity, for certain initial conditions like pressure (p0=20 atm), temperature (T0= 1500 K), ratio of gases in the laser mixture (CO2:N2:H2O ≡ 10:85:5).