Mining the energy consumption data of industrial systems to identify and characterize energy flexibility capabilities

Alejandro Tristán Jiménez, C. Kaymakci, A. Sauer
{"title":"Mining the energy consumption data of industrial systems to identify and characterize energy flexibility capabilities","authors":"Alejandro Tristán Jiménez, C. Kaymakci, A. Sauer","doi":"10.1109/SmartGridComm51999.2021.9632330","DOIUrl":null,"url":null,"abstract":"Industrial energy flexibility can play a pivotal supporting role in the transition towards renewable energy sources. Nonetheless, to harness the vast potential of industrial energy flexibility operation-friendly energy flexibility measures need to be identified and characterized. This work presents a step by step approach to mine historical energy consumption data of an industrial system using the k-means algorithm with support of the average silhouette score method to establish the system's typical operation profiles. These profiles can then be used not only to identify specific energy flexibility measures but their energy flexibility potential among other characterization parameters. The paper presents two representative use case examples and concludes by enumerating the benefits and providing an outlook of improvement opportunities for the developed approach.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Industrial energy flexibility can play a pivotal supporting role in the transition towards renewable energy sources. Nonetheless, to harness the vast potential of industrial energy flexibility operation-friendly energy flexibility measures need to be identified and characterized. This work presents a step by step approach to mine historical energy consumption data of an industrial system using the k-means algorithm with support of the average silhouette score method to establish the system's typical operation profiles. These profiles can then be used not only to identify specific energy flexibility measures but their energy flexibility potential among other characterization parameters. The paper presents two representative use case examples and concludes by enumerating the benefits and providing an outlook of improvement opportunities for the developed approach.
挖掘工业系统的能耗数据,以识别和表征能源灵活性能力
工业能源灵活性可以在向可再生能源过渡的过程中发挥关键的支持作用。然而,为了利用工业能源灵活性的巨大潜力,需要确定和确定有利于运营的能源灵活性措施。本文提出了一种利用k-means算法逐步挖掘工业系统历史能耗数据的方法,并支持平均轮廓评分法来建立系统的典型运行曲线。然后,这些剖面不仅可以用于确定特定的能量柔韧性措施,还可以用于确定其他表征参数中的能量柔韧性潜力。本文提出了两个有代表性的用例示例,并通过列举益处和提供已开发方法的改进机会前景来进行总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信