{"title":"Split and Merge for Accurate Plane Segmentation in RGB-D Images","authors":"Yigong Zhang, Tao Lu, Jian Yang, Hui Kong","doi":"10.1109/ACPR.2017.26","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an accurate and efficient method to detect planar surfaces indoors based on an RGB-D camera. First, we segment the RGB image using a graph-based segmentation approach because of its efficiency and capability in preserving sharp region borders. The graph-based color segmentation methods usually result in over-segmentation or under-segmentation. Then to achieve better plane segmentation results, we propose a split-andmerge strategy. We first segment the planes in the split step by applying a random sampling and consensus (RANSAC) approach to each graph-derived point cloud based on a plane-fitting mean squared error (MSE). In the merge step, we can simultaneously merge some over-segmented regions obtained from the split step by a maximal clique clustering approach. Experiment demonstrates that our plane segmentation algorithm can detect planes indoors at a frame rate of 10Hz, and can achieve very promising performance.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we propose an accurate and efficient method to detect planar surfaces indoors based on an RGB-D camera. First, we segment the RGB image using a graph-based segmentation approach because of its efficiency and capability in preserving sharp region borders. The graph-based color segmentation methods usually result in over-segmentation or under-segmentation. Then to achieve better plane segmentation results, we propose a split-andmerge strategy. We first segment the planes in the split step by applying a random sampling and consensus (RANSAC) approach to each graph-derived point cloud based on a plane-fitting mean squared error (MSE). In the merge step, we can simultaneously merge some over-segmented regions obtained from the split step by a maximal clique clustering approach. Experiment demonstrates that our plane segmentation algorithm can detect planes indoors at a frame rate of 10Hz, and can achieve very promising performance.